Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(2): e0011063, 2023 02.
Article in English | MEDLINE | ID: mdl-36821543

ABSTRACT

Caterpillars of the Neotropical genus Lonomia (Lepidoptera: Saturniidae) are responsible for some fatal envenomation of humans in South America inducing hemostatic disturbances in patients upon skin contact with the caterpillars' spines. Currently, only two species have been reported to cause hemorrhagic syndromes in humans: Lonomia achelous and Lonomia obliqua. However, species identifications have remained largely unchallenged despite improved knowledge of venom diversity and growing evidence that the taxonomy used over past decades misrepresents and underestimates species diversity. Here, we revisit the taxonomic diversity and distribution of Lonomia species using the most extensive dataset assembled to date, combining DNA barcodes, morphological comparisons, and geographical information. Considering new evidence for seven undescribed species as well as three newly proposed nomenclatural changes, our integrative approach leads to the recognition of 60 species, of which seven are known or strongly suspected to cause severe envenomation in humans. From a newly compiled synthesis of epidemiological data, we also examine the consequences of our results for understanding Lonomia envenomation risks and call for further investigations of other species' venom activities. This is required and necessary to improve alertness in areas at risk, and to define adequate treatment strategies for envenomed patients, including performing species identification and assessing the efficacy of anti-Lonomia serums against a broader diversity of species.


Subject(s)
Arthropod Venoms , Moths , Animals , Humans , Larva , Arthropod Venoms/toxicity , Hemorrhage , South America
2.
Plos Neglect Trop Dis, v. 17, n. 2, e0011063, fev. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4816

ABSTRACT

Caterpillars of the Neotropical genus Lonomia (Lepidoptera: Saturniidae) are responsible for some fatal envenomation of humans in South America inducing hemostatic disturbances in patients upon skin contact with the caterpillars’ spines. Currently, only two species have been reported to cause hemorrhagic syndromes in humans: Lonomia achelous and Lonomia obliqua. However, species identifications have remained largely unchallenged despite improved knowledge of venom diversity and growing evidence that the taxonomy used over past decades misrepresents and underestimates species diversity. Here, we revisit the taxonomic diversity and distribution of Lonomia species using the most extensive dataset assembled to date, combining DNA barcodes, morphological comparisons, and geographical information. Considering new evidence for seven undescribed species as well as three newly proposed nomenclatural changes, our integrative approach leads to the recognition of 60 species, of which seven are known or strongly suspected to cause severe envenomation in humans. From a newly compiled synthesis of epidemiological data, we also examine the consequences of our results for understanding Lonomia envenomation risks and call for further investigations of other species’ venom activities. This is required and necessary to improve alertness in areas at risk, and to define adequate treatment strategies for envenomed patients, including performing species identification and assessing the efficacy of anti-Lonomia serums against a broader diversity of species.

3.
Parasit Vectors ; 15(1): 463, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36514137

ABSTRACT

BACKGROUND: Dipylidium caninum is the causal agent of dipylidiasis affecting mainly cats and dogs worldwide. Human cases of dipylidiasis are rare, and the diagnosis is prevalently based on morphological features of the parasite. Here we report the diagnosis of dipylidiasis through morphological and molecular characterization of D. caninum infecting an 11-month-old boy in Cajicá, Colombia. METHODS: Fresh faecal samples were obtained from the infant, and morphological identification of the parasite was performed through faecal smears. DNA was extracted from proglottids and used in PCR analyses for amplification of a 653-bp fragment of the nuclear ribosomal RNA (rRNA) encoding the 28S rRNA gene. A phylogeny study to better characterize the obtained DNA sequence was inferred using the maximum likelihood method and the Tamura-Nei model. RESULTS: After morphological and molecular analyses, D. caninum was identified as the etiological agent causing the infection in the infant. Results of phylogenetical analyses showed that the obtained sequence clusters within the feline genotype clade. After the diagnosis of the parasite, effective treatment with praziquantel was administered to the infant. CONCLUSIONS: This is the third human case of dipylidiasis reported in Colombia, and the first study in South America to provide a molecular identification of D. caninum.


Subject(s)
Cestoda , Cestode Infections , Parasites , Male , Cats , Animals , Infant , Humans , Dogs , Colombia , Cestoda/genetics , Cestode Infections/diagnosis , Cestode Infections/veterinary , Cestode Infections/parasitology , Praziquantel/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...