Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Autophagy ; 20(6): 1383-1397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38436206

ABSTRACT

BRAFV600E is the most prevalent mutation in thyroid cancer and correlates with poor prognosis and therapy resistance. Although selective inhibitors of BRAFV600E have been developed, more advanced tumors such as anaplastic thyroid carcinomas show a poor response in clinical trials. Therefore, the study of alternative survival mechanisms is needed. Since metabolic changes have been related to malignant progression, in this work we explore metabolic dependencies of thyroid tumor cells to exploit them therapeutically. Our results show that respiration of thyroid carcinoma cells is highly dependent on fatty acid oxidation and, in turn, fatty acid mitochondrial availability is regulated through macroautophagy/autophagy. Furthermore, we show that both lysosomal inhibition and the knockout of the essential autophagy gene, ATG7, lead to enhanced lipolysis; although this effect is not essential for survival of thyroid carcinoma cells. We also demonstrate that following inhibition of either autophagy or fatty acid oxidation, thyroid tumor cells compensate oxidative phosphorylation deficiency with an increase in glycolysis. In contrast to lipolysis induction, upon autophagy inhibition, glycolytic boost in autophagy-deficient cells is essential for survival and, importantly, correlates with a higher sensitivity to the BRAFV600E selective inhibitor, vemurafenib. In agreement, downregulation of the glycolytic pathway results in enhanced mitochondrial respiration and vemurafenib resistance. Our work provides new insights into the role of autophagy in thyroid cancer metabolism and supports mitochondrial targeting in combination with vemurafenib to eliminate BRAFV600E-positive thyroid carcinoma cells.Abbreviations: AMP: adenosine monophosphate; ATC: anaplastic thyroid carcinoma; ATG: autophagy related; ATP: adenosine triphosphate; BRAF: B-Raf proto-oncogene, serine/threonine kinase; Cas9: CRISPR-associated protein; CREB: cAMP responsive element binding protein; CRISPR: clustered regularly interspaced short palindromic repeats; 2DG: 2-deoxyglucose; FA: fatty acid; FAO: fatty acid oxidation; FASN: fatty acid synthase; FCCP: trifluoromethoxy carbonyl cyanide phenylhydrazone; LAMP1: lysosomal associated membrane protein 1; LIPE/HSL: lipase E, hormone sensitive type; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OCR: oxygen consumption rate; OXPHOS: oxidative phosphorylation; PRKA/PKA: protein kinase cAMP-activated; PTC: papillary thyroid carcinoma; SREBF1/SREBP1: sterol regulatory element binding transcription factor 1.


Subject(s)
Autophagy , Drug Resistance, Neoplasm , Mitochondria , Proto-Oncogene Proteins B-raf , Thyroid Neoplasms , Humans , Autophagy/drug effects , Autophagy/genetics , Thyroid Neoplasms/pathology , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Cell Line, Tumor , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Fatty Acids/metabolism , Glycolysis/drug effects , Proto-Oncogene Mas , Vemurafenib/pharmacology , Lipolysis/drug effects , Cell Respiration/drug effects , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Sulfonamides/pharmacology , Oxidative Phosphorylation/drug effects , Lysosomes/metabolism , Lysosomes/drug effects , Indoles/pharmacology
2.
Int J Mol Sci ; 22(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34204950

ABSTRACT

The dysregulation of autophagy is important in the development of many cancers, including thyroid cancer, where V600EBRAF is a main oncogene. Here, we analyse the effect of V600EBRAF inhibition on autophagy, the mechanisms involved in this regulation and the role of autophagy in cell survival of thyroid cancer cells. We reveal that the inhibition of V600EBRAF activity with its specific inhibitor PLX4720 or the depletion of its expression by siRNA induces autophagy in thyroid tumour cells. We show that V600EBRAF downregulation increases LKB1-AMPK signalling and decreases mTOR activity through a MEK/ERK-dependent mechanism. Moreover, we demonstrate that PLX4720 activates ULK1 and increases autophagy through the activation of the AMPK-ULK1 pathway, but not by the inhibition of mTOR. In addition, we find that autophagy blockade decreases cell viability and sensitize thyroid cancer cells to V600EBRAF inhibition by PLX4720 treatment. Finally, we generate a thyroid xenograft model to demonstrate that autophagy inhibition synergistically enhances the anti-proliferative and pro-apoptotic effects of V600EBRAF inhibition in vivo. Collectively, we uncover a new role of AMPK in mediating the induction of cytoprotective autophagy by V600EBRAF inhibition. In addition, these data establish a rationale for designing an integrated therapy targeting V600EBRAF and the LKB1-AMPK-ULK1-autophagy axis for the treatment of V600EBRAF-positive thyroid tumours.


Subject(s)
Autophagy-Related Protein-1 Homolog/genetics , Intracellular Signaling Peptides and Proteins/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , AMP-Activated Protein Kinase Kinases , Apoptosis/drug effects , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoles/pharmacology , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , RNA, Small Interfering/genetics , Signal Transduction/drug effects , Sulfonamides/pharmacology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...