Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ChemMedChem ; : e202400172, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724442

ABSTRACT

Quantum dots (QDs) semiconducting nanomaterials, have garnered attention due to their distinctive properties, including small size, high luminescence, and biocompatibility. In the context of triple-negative breast cancer (TNBC), notorious for its resistance to conventional treatments, QDs exhibit promising potential for enhancing diagnostic imaging and providing targeted therapies. This review underscores recent advancements in the utilization of QDs in imaging techniques, such as fluorescence tomography and magnetic resonance imaging, aiming at the early and precise detection of tumors. Emphasis is placed on the significance of QD design, synthesis and functionalization processes as well as their use in innovative strategies for targeted drug delivery, capitalizing on their ability to selectively deliver therapeutic agents to cancer cells. As the research in this field advances rapidly, this review covers a classification of QDs according to their composition, the characterization techniques than can be used to determine their properties and, subsequently, emphasizes recent findings in the field of TNBC-targeting, highlighting the imperative need to address challenges, like potential toxicity or methodologies standardization. Collectively, the findings explored thus far suggest that QDs could pave the way for early diagnosis and effective therapy of TNBC, representing a significant stride toward precise and personalized strategies in treating TNBC.

2.
Biomed Mater ; 19(3)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38387062

ABSTRACT

Nanoscale materials have demonstrated a very high potential in anticancer therapy by properly adjusting their functionalization and physicochemical properties. Herein, we report the synthesis of some novel vanadocene-loaded silica-based nanomaterials incorporating four different S-containing amino acids (penicillamine, methionine, captopril, and cysteine) and different fluorophores (rhodamine B, coumarin 343 or Alexa Fluor™ 647), which have been characterized by diverse solid-state spectroscopic techniques viz; FTIR, diffuse reflectance spectroscopies,13C and51V solid-state NMR spectroscopy, thermogravimetry and TEM. The analysis of the biological activity of the novel vanadocene-based nanostructured silicas showed that the materials containing cysteine and captopril aminoacids demonstrated high cytotoxicity and selectivity against triple negative breast cancer cells, making them very promising antineoplastic drug candidates. According to the biological results it seems that vanadium activity is connected to its incorporation through the amino acid, resulting in synergy that increases the cytotoxic activity against cancer cells of the studied materials presumably by increasing cell internalization. The results presented herein hold significant potential for future developments in mesoporous silica-supported metallodrugs, which exhibit strong cytotoxicity while maintaining low metal loading. They also show potential for theranostic applications highlighted by the analysis of the optical properties of the studied systems after incorporating rhodamine B, coumarin 343 (possible)in vitroanticancer analysis, or Alexa Fluor™ 647 (in vivostudies of cancer models).


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Silicon Dioxide/chemistry , Cysteine/therapeutic use , Precision Medicine , Captopril/therapeutic use , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Porosity
3.
Pharmaceutics ; 16(1)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38258103

ABSTRACT

The search for alternatives to cisplatin has led to the development of new metal complexes where thiazoline derivatives based on platinum(II) and palladium(II) stand out. In this sense, the Pt(II) and Pd(II) complexes coordinated with the thiazoline derivative ligand 2-(3,4-dichlorophenyl)imino-N-(2-thiazolin-2-yl)thiazolidine (TdTn), with formula [PtCl2(TdTn)] and [PdCl2(TdTn)], have previously shown good results against several cancer lines; however, in this work, we have managed to improve their activity by supporting them on mesoporous silica nanoparticles (MSN). The incorporation of metal compounds with a melatonin derivative (5-methoxytryptamine, 5MT), which is a well-known antioxidant and apoptosis inducer in different types of cancer, has been able to increase the cytotoxic activity of both MSN-supported and isolated complexes with only a very low amount (0.35% w/w) of this antioxidant. The covalently functionalized systems that have been synthesized are able to increase selectivity as well as accumulation in HeLa cells. The final materials containing the metal complexes and 5MT (MSN-5MT-PtTdTn and MSN-5MT-PdTdTn) required up to nine times less metal to achieve the same cytotoxic activity than their corresponding non-formulated counterparts did, thus reducing the potential side effects caused by the use of the free metal complexes.

4.
Curr Pharm Des ; 29(22): 1791-1799, 2023.
Article in English | MEDLINE | ID: mdl-37518995

ABSTRACT

AIMS: The fight against cancer is an active research topic that combines several disciplines to find suitable agents to treat various tumours. BACKGROUND: Following cisplatin, organometallic compounds, including titanocene derivatives, have been tested as antitumoral agents. However, key issues still need to be addressed in metallodrug chemotherapy relating to solubility, stability, and dosage. Mesoporous silica nanoparticles, being low toxic biocompatible materials with high loading capacity, are ideal candidates to overcome these problems. OBJECTIVE: This study aimed to prepare and structurally characterize titanocene functionalized mesoporous silica nanoparticles and evaluate their cytotoxic activity against cancer cells. METHODS: The preparation of titanocene functionalized mesoporous silica nanoparticles was achieved by synthetic protocols, involving either grafting or tethering. Characterization was carried out using standard techniques, FT-IR, XRD, XRF, TEM, and BET. The titanocene functionalized materials were studied as antitumoral agents in the breast cancer lines MCF-7 and MDA-MB-231. RESULTS: The functionalized MSN showed promising antitumoral activity against cells lines MCF-7 and MDAMB- 231 up to 9 times more than titanocene alone. CONCLUSION: This study reported the potential of titanocene-functionalized mesoporous silica nanoparticles in future chemotherapeutic actions.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Organometallic Compounds , Humans , Female , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/therapeutic use , Organometallic Compounds/pharmacology , Organometallic Compounds/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Porosity
5.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982616

ABSTRACT

Calcium carbonate, one of the most commonly found biominerals produced by organisms, has shown great potential for the development of systems with biological applications due to its excellent biocompatibility, biodegradability, and simple chemical composition. Here, we focus on the synthesis of various carbonate-based materials with vaterite phase control and their subsequent functionalization for applications in treating glioblastoma, one of the most limiting tumors currently without effective treatments. The incorporation of l-cysteine into the systems increased cell selectivity while the incorporation of manganese supplied the materials with cytotoxic capacity. Extensive characterization of the systems by infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, X-ray fluorescence, and transmission electron microscopy confirmed the incorporation of the different fragments causing selectivity and cytotoxicity to the systems. To verify their therapeutic activity, the vaterite-based materials were tested in the CT2A cell line (murine glioma) and compared to SKBR3 (breast cancer) and HEK-293T (human kidney) cell lines. These studies on the cytotoxicity of the materials have shown promising results that can encourage future in vivo studies in glioblastoma models.


Subject(s)
Glioblastoma , Humans , Animals , Mice , Microscopy, Electron, Scanning , Glioblastoma/drug therapy , Carbonates , Calcium Carbonate/chemistry , Microscopy, Electron, Transmission , X-Ray Diffraction
6.
Pharmaceutics ; 15(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36839883

ABSTRACT

Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.

7.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768659

ABSTRACT

Since the pioneering work of Vallet-Regí's group on the design and synthesis of mesoporous silica-based materials with therapeutic applications, during the last 15 years, the potential use of mesoporous silica nanostructured materials as drug delivery vehicles has been extensively explored. The versatility of these materials allows the design of a wide variety of platforms that can incorporate numerous agents of interest (fluorophores, proteins, drugs, etc.) in a single scaffold. However, the use of these systems loaded with metallodrugs as cytotoxic agents against different diseases and with distinct therapeutic targets has been studied to a much lesser extent. This review will focus on the work carried out in this field, highlighting both the pioneering and recent contributions of Spanish groups that have synthesized a wide variety of systems based on titanium, tin, ruthenium, copper and silver complexes supported onto nanostructured silica. In addition, this article will also discuss the importance of the structural features of the systems for evaluating and modulating their therapeutic properties. Finally, the most interesting results obtained in the study of the potential therapeutic application of these metallodrug-functionalized silica-based materials against cancer and bacteria will be described, paying special attention to preclinical trials in vivo.


Subject(s)
Nanostructures , Neoplasms , Humans , Silicon Dioxide/chemistry , Nanostructures/chemistry , Drug Delivery Systems/methods , Pharmaceutical Preparations , Porosity
8.
ACS Biomater Sci Eng ; 8(11): 4838-4849, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36240025

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative disease with no cure to date. Therapeutic agents used to treat ALS are very limited, although combined therapies may offer a more effective treatment strategy. Herein, we have studied the potential of nanomedicine to prepare a single platform based on mesoporous silica nanoparticles (MSNs) for the treatment of an ALS animal model with a cocktail of agents such as leptin (neuroprotective) and pioglitazone (anti-inflammatory), which have already demonstrated promising therapeutic ability in other neurodegenerative diseases. Our goal is to study the potential of functionalized mesoporous materials as therapeutic agents against ALS using MSNs as nanocarriers for the proposed drug cocktail leptin/pioglitazone (MSN-LEP-PIO). The nanostructured materials have been characterized by different techniques, which confirmed the incorporation of both agents in the nanosystem. Subsequently, the effect, in vivo, of the proposed drug cocktail, MSN-LEP-PIO, was used in the murine model of TDP-43 proteinopathy (TDP-43A315T mice). Body weight loss was studied, and using the rotarod test, motor performance was assessed, observing a continuous reduction in body weight and motor coordination in TDP-43A315T mice and wild-type (WT) mice. Nevertheless, the disease progression was slower and showed significant improvements in motor performance, indicating that TDP-43A315T mice treated with MSN-LEP-PIO seem to have less energy demand in the late stage of the symptoms of ALS. Collectively, these results seem to indicate the efficiency of the systems in vivo and the usefulness of their use in neurodegenerative models, including ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Nanoparticles , Neurodegenerative Diseases , Mice , Animals , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Pioglitazone/pharmacology , Leptin , Mice, Transgenic , Silicon Dioxide , DNA-Binding Proteins/metabolism
9.
Biomater Adv ; 137: 212823, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929238

ABSTRACT

A new series of theranostic silica materials based on fibrous silica particles acting as nanocarriers of two different cytotoxic agents, namely, chlorambucil and an organotin metallodrug have been prepared and structurally characterized. Besides the combined therapeutic activity, these platforms have been decorated with a targeting molecule (folic acid, to selectively target triple negative breast cancer) and a molecular imaging agent (Alexa Fluor 647, to enable their tracking both in vitro and in vivo). The in vitro behaviour of the multifunctional silica systems showed a synergistic activity of the two chemotherapeutic agents in the form of an enhanced cytotoxicity against MDA-MB-231 cells (triple negative breast cancer) as well as by a higher cell migration inhibition. Subsequently, the in vivo applicability of the siliceous nanotheranostics was successfully assessed by observing with in vivo optical imaging techniques a selective tumour accumulation (targeting ability), a marked inhibition of tumour growth paired to a marked antiangiogenic ability after 13 days of systemic administration, thus, confirming the enhanced theranostic activity. The systemic nanotoxicity was also evaluated by analyzing specific biochemical markers. The results showed a positive effect in form of reduced cytotoxicity when both chemotherapeutics are administered in combination thanks to the fibrous silica nanoparticles. Overall, our results confirm the promising applicability of these novel silica-based nanoplatforms as advanced drug-delivery systems for the synergistic theranosis of triple negative breast cancer.


Subject(s)
Antineoplastic Agents , Nanoparticles , Triple Negative Breast Neoplasms , Antineoplastic Agents/pharmacology , Humans , Nanoparticles/therapeutic use , Precision Medicine , Silicon Dioxide/chemistry , Triple Negative Breast Neoplasms/drug therapy
10.
Biomater Adv ; 137: 212819, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929256

ABSTRACT

Nanotechnology has immensely advanced the field of cancer diagnostics and treatment by introducing potential delivery vehicles as carriers for drugs or therapeutic agents. In due course, mesoporous silica nanoparticles (MSNs) have emerged as excellent vehicles for delivering drugs, biomolecules, and biomaterials, attributed to their solid framework and porosity providing a higher surface area for decorating with various functional ligands. Recently, the metal tin (Sn) has gained huge importance in cancer research owing to its excellent cytotoxicity and ability to kill cancer cells. In the present work, we synthesized MSNs, conjugated them with organotin compounds, and characterized them using various physicochemical techniques. Subsequently, the biological evaluation of MSN (S1), MSN-MP (S2) and tin-conjugated MSNs (S3: MSN-MP-SnPh3) (MP = 3-mercaptopropyltriethoxysilane) revealed that these nanoconjugates induced cytotoxicity, necrosis, and apoptosis in MCF-7 cells. Moreover, these nanoconjugates exhibited anti-angiogenic properties as demonstrated in the chick embryo model. The increase of reactive oxygen species (ROS) was found as a one of the plausible mechanisms underlying cancer cell cytotoxicity induced by these nanoconjugates, encouraging their application for the treatment of cancer. The tin-conjugated MSNs demonstrated less toxicity to normal cells compared to cancer cells. Furthermore, the genotoxicity studies revealed the clastogenic and aneugenic effects of these nanoconjugates in CHO cells mostly at high concentrations. These interesting observations are behind the idea of developing tin-conjugated MSNs as prospective candidates for anticancer therapy.


Subject(s)
Antineoplastic Agents , Silicon Dioxide , Tin , Animals , Chick Embryo , Cricetinae , Humans , Antineoplastic Agents/pharmacology , Cell Survival , Cricetulus , Drug Carriers/chemistry , Nanoconjugates , Silicon Dioxide/chemistry , Tin/pharmacology
11.
ACS Appl Bio Mater ; 4(5): 4394-4405, 2021 05 17.
Article in English | MEDLINE | ID: mdl-35006851

ABSTRACT

Cancer is the leading cause of death in the developed world. In the last few decades, photodynamic therapy (PDT) has augmented the number of medical techniques to treat this disease in the clinics. As the pharmacological active species to kill cancer cells are only generated upon light irradiation, PDT is associated with an intrinsic first level of selectivity. However, since PDT agents also accumulate in the surrounding, healthy tissue and since it is practically very challenging to only expose the tumor site to light, some side effects can be observed. Consequently, there is a need for a selective drug delivery system, which would give a second level of selectivity. In this work, a dual tumor targeting approach is presented based on mesoporous silica nanoparticles, which act by the enhanced permeability and retention effect, and the conjugation to folic acid, which acts as a targeting moiety for folate receptor-overexpressed cancer cells. The conjugates were found to be nontoxic in noncancerous human normal lung fibroblast cells while showing a phototoxic effect upon irradiation at 480 or 540 nm in the low nanomolar range in folate receptor overexpressing cancerous human ovarian carcinoma cells, demonstrating their potential for cancer targeted treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Coordination Complexes/pharmacology , Photosensitizing Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Materials Testing , Molecular Structure , Nanoparticles/chemistry , Particle Size , Photochemotherapy , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Porosity , Pyridines/chemistry , Pyridines/pharmacology , Ruthenium/chemistry , Ruthenium/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology
12.
Pharmaceutics ; 12(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503320

ABSTRACT

The synthesis, characterization and cytotoxic activity against different cancer cell lines of various mesoporous silica-based materials containing folate targeting moieties and a cytotoxic fragment based on a triphenyltin(IV) derivative have been studied. Two different mesoporous nanostructured silica systems have been used: firstly, micronic silica particles of the MSU-2 type and, secondly, mesoporous silica nanoparticles (MSNs) of about 80 nm. Both series of materials have been characterized by different methods, such as powder X-ray diffraction, X-ray fluorescence, absorption spectroscopy and microscopy. In addition, these systems have been tested against four different cancer cell lines, namely, OVCAR-3, DLD-1, A2780 and A431, in order to observe if the size of the silica-based systems and the quantity of incorporated folic acid influence their cytotoxic action. The results show that the materials are more active when the quantity of folic acid is higher, especially in those cells that overexpress folate receptors such as OVCAR-3 and DLD-1. In addition, the study of the potential modulation of the soluble folate receptor alpha (FOLR1) by treatment with the synthesized materials has been carried out using OVCAR-3, DLD-1, A2780 and A431 tumour cell lines. The results show that a relatively high concentration of folic acid functionalization of the nanostructured silica together with the incorporation of the cytotoxic tin fragment leads to an increase in the quantity of the soluble FOLR1 secreted by the tumour cells. In addition, the studies reported here show that this increase of the soluble FOLR1 occurs presumably by cutting the glycosyl-phosphatidylinositol anchor of membrane FR-α and by the release of intracellular FR-α. This study validates the potential use of a combination of mesoporous silica materials co-functionalized with folate targeting molecules and an organotin(IV) drug as a strategy for the therapeutic treatment of several cancer cells overexpressing folate receptors.

13.
Cancers (Basel) ; 12(1)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940937

ABSTRACT

Three different multifunctional nanosystems based on the tethering onto mesoporous silica nanoparticles (MSN) of different fragments such as an organotin-based cytotoxic compound Ph3Sn{SCH2CH2CH2Si(OMe)3} (MSN-AP-Sn), a folate fragment (MSN-AP-FA-Sn), and an enzyme-responsive peptide able to release the metallodrug only inside cancer cells (MSN-AP-FA-PEP-S-Sn), have been synthesized and fully characterized by applying physico-chemical techniques. After that, an in vitro deep determination of the therapeutic potential of the achieved multifunctional nanovectors was carried out. The results showed a high cytotoxic potential of the MSN-AP-FA-PEP-S-Sn material against triple negative breast cancer cell line (MDA-MB-231). Moreover, a dose-dependent metallodrug-related inhibitory effect on the migration mechanism of MDA-MB-231 tumor cells was shown. Subsequently, the organotin-functionalized nanosystems have been further modified with the NIR imaging agent Alexa Fluor 647 to give three different theranostic silica-based nanoplatforms, namely, MSN-AP-Sn-AX (AX-1), MSN-AP-FA-Sn-AX (AX-2), and MSN-AP-FA-PEP-S-Sn-AX (AX-3). Their in vivo potential as theranostic markers was further evaluated in a xenograft mouse model of human breast adenocarcinoma. Owing to the combination of the receptor-mediated site targeting and the specific fine-tuned release mechanism of the organotin metallodrug, the nanotheranostic drug MSN-AP-FA-PEP-S-Sn-AX (AX-3) has shown targeted diagnostic ability in combination with enhanced therapeutic activity by promoting the inhibition of tumor growth with reduced hepatic and renal toxicity upon the repeated administration of the multifunctional nanodrug.

14.
J Inorg Biochem ; 203: 110912, 2020 02.
Article in English | MEDLINE | ID: mdl-31743886

ABSTRACT

A series of copper-functionalized SBA-15 (Santa Barbara Amorphous) materials containing the ligands triethoxysilylpropylmaleamic acid (maleamic) or triethoxy-3-(2-imidazolin-1-yl)propylsilane (imidazoline) have been prepared. The nanostructured silica-based systems SBA-maleamic, SBA-imidazoline, SBA-maleamic-Cu and SBA-imidazoline-Cu were characterized by several methods observing that the functionalization took place mainly inside the pores of the mesoporous system. The antimicrobial behaviour of the synthesized materials against Staphylococcus aureus and Escherichia coli was tested observing a very potent activity of the copper-functionalized systems (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for SBA-maleamic-Cu of ca. 31.25 µg/mL, which correspond with ca. 1.13 µg/mL of Cu). A study of the oxidative stress promoted by the synthesized materials showed that the SBA-maleamic-Cu and the SBA-imidazoline-Cu were able to increase the reactive oxygen species (ROS) production in S. aureus by 427% and 373%, respectively, while this increase was slightly lower in E. coli (387 and 324%, respectively). Furthermore, an electrochemical study was carried out in order to determine if these materials interact with lysine or alanine to validate a potential antimicrobial mechanism based on the inhibition of the synthesis of the peptidoglycan of the bacterial wall. Finally, these studies were also performed to determine the potential interaction of the copper-containing materials with glutathione in order to assess if they are able to perturb the metabolism of this tripeptide.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Copper/chemistry , Nanoparticles/chemistry , Organometallic Compounds/chemical synthesis , Reactive Oxygen Species/metabolism , Silicon Dioxide/chemistry , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/metabolism , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/metabolism , Organometallic Compounds/pharmacology , Oxidative Stress
15.
Pharmaceutics ; 11(1)2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30646534

ABSTRACT

Mesoporous silica nanoparticles (MSNs) are an interesting class of nanomaterials with potential applications in different therapeutic areas and that have been extensively used as drug carriers in different fields of medicine. The present work is focused on the synthesis of MSNs containing a maleamato ligand (MSN-maleamic) and the subsequent coordination of copper(II) ions (MSN-maleamic-Cu) for the exploration of their potential application as antibacterial agents. The Cu-containing nanomaterials have been characterized by different techniques and the preliminary antibacterial effect of the supported maleamato-copper(II) complexes has been tested against two types of bacteria (Gram positive and Gram negative) in different assays to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The biological results showed a moderate antibacterial activity against Escherichia coli which motivated a more detailed study of the antibacterial mechanism of action of the synthesized maleamate-containing nanosystems and whose findings showed oxidative stress generation in bacterial cells. All the prepared nanomaterials were also tested as catalysts in the "solvent free" selective oxidation of benzyl alcohol, to observe if there is a potential correlation between the catalytic oxidation capacity of the materials and the observed oxidative stress in bacteria. This may help in the future, for a more accurate rational design of antibacterial nanosystems, based on their observed catalytic oxidation activity.

16.
Dalton Trans ; 47(35): 12284-12299, 2018 Sep 11.
Article in English | MEDLINE | ID: mdl-30112529

ABSTRACT

The mesoporous silica-based material SBA-15 (Santa Barbara Amorphous-15) has been modified with the aminodiol ligand 3-[bis(2-hydroxyethyl)amino]propyltriethoxysilane (PADOH) to give the corresponding material SBA-PADOH. Subsequent functionalization with a diorganotin(iv) compound, SnPh2Cl2 (1), and with two titanocene derivatives, TiCp2Cl2 ([Ti(η5-C5H5)2Cl2] (2)) and TiCpCpPhNfCl2 ([Ti(η5-C5H5)(η5-C5H4CHPhNf)Cl2] (3) (Ph = C6H5; Nf = C10H7)), gave the materials SBA-PADO-SnPh2 (M1), SBA-PADO-TiCp2 (M2) and SBA-PADO-TiCpCp* (M3), respectively. SBA-PADOH and M1-M3 have been characterized by various techniques such as FT-IR, XRD, XRF, solid-state NMR, nitrogen adsorption-desorption isotherms, electrochemical methods, SEM and TEM, observing that the functionalization has mainly taken place inside the pores of the corresponding porous system. In addition, mechanistic aspects of the apoptosis triggered by the synthesized materials have been studied in vitro in tumour cell lines derived from three distinct types of cancer in order to elucidate their growth inhibition and interference with the expression of tumour necrosis factor alfa (TNF-α) and the first apoptosis signal receptor (Fas or tumour necrosis factor receptor 6). It was observed that the antiproliferative and proapoptotic capacity of the materials depends on their functionalization with the different cytotoxic prodrugs (organotin or titanocene derivatives). The study shows that M1-M3 influence the metabolic activity of the tumour cells and modulate the apoptotic pathways by different mechanisms, according to the active compound inside the material.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Nanostructures/chemistry , Organoplatinum Compounds/pharmacology , Silicon Dioxide/chemistry , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Electrochemical Techniques , Humans , Mitochondria/drug effects , Mitochondria/metabolism , Organoplatinum Compounds/chemistry , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...