Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 66(1): 890-912, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36517209

ABSTRACT

The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.


Subject(s)
Halogenation , Purinergic P1 Receptor Antagonists , Cricetinae , Animals , Humans , CHO Cells , Leukocytes, Mononuclear/metabolism , Adenosine A2 Receptor Antagonists/pharmacology , Receptor, Adenosine A2B/metabolism , Ligands , Halogens
2.
ChemMedChem ; 18(4): e202200556, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36398403

ABSTRACT

Farnesoid X receptor (FXR) is a nuclear receptor with an essential role in regulating bile acid synthesis and cholesterol homeostasis. FXR activation by agonists is explained by an αAF-2-trapping mechanism; however, antagonism mechanisms are diverse. We discuss microsecond molecular dynamics (MD) simulations investigating our recently reported FXR antagonists 2a and 2 h. We study the antagonist-induced conformational changes in the FXR ligand-binding domain, when compared to the synthetic (GW4064) or steroidal (chenodeoxycholic acid, CDCA) FXR agonists in the FXR monomer or FXR/RXR heterodimer r, and in the presence and absence of the coactivator. Our MD data suggest ligand-specific influence on conformations of different FXR-LBD regions, including the α5/α6 region, αAF-2, and α9-11. Changes in the heterodimerization interface induced by antagonists seem to be associated with αAF-2 destabilization, which prevents both co-activator and co-repressor recruitment. Our results provide new insights into the conformational behaviour of FXR, suggesting that FXR antagonism/agonism shift requires a deeper assessment than originally proposed by crystal structures.


Subject(s)
DNA-Binding Proteins , Transcription Factors , Transcription Factors/metabolism , DNA-Binding Proteins/chemistry , Ligands , Receptors, Cytoplasmic and Nuclear , Chenodeoxycholic Acid/pharmacology
3.
J Med Chem ; 65(3): 2091-2106, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35068155

ABSTRACT

We herein document a large collection of 108 2-amino-4,6-disubstituted-pyrimidine derivatives as potent, structurally simple, and highly selective A1AR ligands. The most attractive ligands were confirmed as antagonists of the canonical cyclic adenosine monophosphate pathway, and some pharmacokinetic parameters were preliminarilly evaluated. The library, built through a reliable and efficient three-component reaction, comprehensively explored the chemical space allowing the identification of the most prominent features of the structure-activity and structure-selectivity relationships around this scaffold. These included the influence on the selectivity profile of the aromatic residues at positions R4 and R6 of the pyrimidine core but most importantly the prominent role to the unprecedented A1AR selectivity profile exerted by the methyl group introduced at the exocyclic amino group. The structure-activity relationship trends on both A1 and A2AARs were conveniently interpreted with rigorous free energy perturbation simulations, which started from the receptor-driven docking model that guided the design of these series.


Subject(s)
Adenosine A1 Receptor Antagonists/chemistry , Pyrimidines/chemistry , Adenosine A1 Receptor Antagonists/metabolism , Adenosine A1 Receptor Antagonists/pharmacokinetics , Binding Sites , Cell Line , Drug Design , Drug Stability , Humans , Kinetics , Molecular Docking Simulation , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Receptor, Adenosine A1/chemistry , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...