Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Analyst ; 148(22): 5658-5666, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37807710

ABSTRACT

MicroRNAs (miRs) have emerged as promising biomarkers for diagnosing and predicting the prognosis of liver injury. This study aimed to compare the performance of two Luminex platforms, MAGPIX and FLEXMAP 3D, utilizing the innovative Dynamic Chemical Labelling (DCL) technology for direct detection and analysis of miR-122-5p in serum samples from patients with liver injury. Serum samples were collected from four patients with liver injury and four healthy controls. The levels of miR-122-5p were measured using the DCL method on both MAGPIX and FLEXMAP 3D platforms. The performance evaluation included the limit of detection (LOD), intra-assay and inter-assay precision, as well as accuracy. The results demonstrated that both platforms exhibited high sensitivity and specificity in detecting miR-122-5p in serum samples from patients with liver injury. However, FLEXMAP 3D indicated a lower LOD compared to MAGPIX. The precision of miR-122-5p detection was similar between the two platforms. In conclusion, both MAGPIX and FLEXMAP 3D Luminex platforms, in conjunction with DCL reagents, proved to be reliable and sensitive tools for detecting miR-122-5p in serum samples from patients with liver injury. Although both platforms were effective, FLEXMAP 3D exhibited slightly better performance, suggesting its preference for miR detection in clinical settings. These findings offer valuable insights for selecting the appropriate Luminex platform for miR detection in patients with liver injury and beyond.


Subject(s)
MicroRNAs , Humans , Biomarkers , Prognosis , Limit of Detection
2.
Biosens Bioelectron ; 230: 115268, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37030262

ABSTRACT

The COVID-19 pandemic has highlighted the need for innovative approaches to its diagnosis. Here we present CoVradar, a novel and simple colorimetric method that combines nucleic acid analysis with dynamic chemical labeling (DCL) technology and the Spin-Tube device to detect SARS-CoV-2 RNA in saliva samples. The assay includes a fragmentation step to increase the number of RNA templates for analysis, using abasic peptide nucleic acid probes (DGL probes) immobilized to nylon membranes in a specific dot pattern to capture RNA fragments. Duplexes are formed by labeling complementary RNA fragments with biotinylated SMART bases, which act as templates for DCL. Signals are generated by recognizing biotin with streptavidin alkaline phosphatase and incubating with a chromogenic substrate to produce a blue precipitate. CoVradar results are analysed by CoVreader, a smartphone-based image processing system that can display and interpret the blotch pattern. CoVradar and CoVreader provide a unique molecular assay capable of detecting SARS-CoV-2 viral RNA without the need for extraction, preamplification, or pre-labeling steps, offering advantages in terms of time (∼3 h/test), cost (∼€1/test manufacturing cost) and simplicity (does not require large equipment). This solution is also promising for developing assays for other infectious diseases.


Subject(s)
Biosensing Techniques , COVID-19 , Mobile Applications , Humans , COVID-19/diagnosis , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Pandemics , Biosensing Techniques/methods , Smartphone , Nucleic Acid Amplification Techniques/methods
3.
Br J Clin Pharmacol ; 89(8): 2497-2507, 2023 08.
Article in English | MEDLINE | ID: mdl-36965054

ABSTRACT

AIMS: Detection and characterization of idiosyncratic drug-induced liver injury (DILI) currently rely on standard liver tests, which are suboptimal in terms of specificity, sensitivity and prognosis. Therefore, DILI diagnosis can be delayed, with important consequences for the patient. In this study, we aimed to evaluate the potential of osteopontin, cytokeratin-18 (caspase-cleaved: ccK18 and total: K18), α-glutathione-S-transferase and microRNA-122 as new DILI biomarkers. METHODS: Serial blood samples were collected from 32 DILI and 34 non-DILI acute liver injury (ALI) cases and a single sample from 43 population controls without liver injury (HLC) and analysed using enzyme-linked immunosorbent assay (ELISA) or single-molecule arrays. RESULTS: All biomarkers differentiated DILI and ALI from HLC with an area under receiver operator characteristic curve (AUC) value of >0.75 but were less efficient in distinguishing DILI from ALI, with ccK18 (0.79) and K18 (0.76) demonstrating highest potential. However, the AUC improved considerably (0.98) for ccK18 when comparing DILI and a subgroup of autoimmune hepatitis cases. Cytokeratin-18, microRNA-122 and α-glutathione-S-transferase correlated well with traditional transaminases, while osteopontin correlated most strongly with the international normalized ratio (INR). CONCLUSIONS: ccK18 appears promising in distinguishing DILI from autoimmune hepatitis but less so from other forms of acute liver injury. Osteopontin demonstrates prognostic potential with higher levels detected in more severe cases regardless of aetiology.


Subject(s)
Chemical and Drug Induced Liver Injury , Hepatitis, Autoimmune , Liver Diseases , MicroRNAs , Humans , Osteopontin , Keratin-18 , Prognosis , Chemical and Drug Induced Liver Injury/diagnosis , Chemical and Drug Induced Liver Injury/etiology , Liver , Biomarkers , Transferases , Glutathione
4.
Biosens Bioelectron ; 219: 114770, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36270082

ABSTRACT

The detection of repetitive sequences with single-base resolution is becoming increasingly important aiming to understand the biological implications of genomic variation in these sequences. However, there is a lack of techniques to experimentally validate sequencing data from repetitive sequences obtained by Next-Generation Sequencing methods, especially in the case of Single-Nucleotide Variations (SNVs). That is one of the reasons why repetitive sequences have been poorly studied and excluded from most genomic studies. Therefore, in addition to sequencing data, there is an urgent need for efficient validation methods of genomic variation in these sequences. Herein we report the development of chemFISH, an alternative method for the detection of SNVs in repetitive sequences. ChemFISH is an innovative method based on dynamic chemistry labelling and abasic Peptide Nucleic Acid (PNA) probes to detect in situ the α-satellite DNA, organized in tandem repeats, with single-base resolution in a direct and rapid reaction. With this approach, we detected by microscopy the α-satellite DNA in a variety of human cell lines, we quantified the detection showing a low coefficient of variation among samples (13.16%-25.33%) and we detected single-base specificity with high sensitivity (82.41%-88.82%). These results indicate that chemFISH can serve as a rapid method to validate previously detected SNVs in sequencing data, as well as to find novel SNVs in repetitive sequences. Furthermore, the versatile chemistry behind chemFISH can lead to develop novel molecular assays for the in situ detection of nucleic acids.

5.
Anal Chem ; 94(30): 10626-10635, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35866879

ABSTRACT

Barcoding and pooling cells for processing as a composite sample are critical to minimize technical variability in multiplex technologies. Fluorescent cell barcoding has been established as a standard method for multiplexing in flow cytometry analysis. In parallel, mass-tag barcoding is routinely used to label cells for mass cytometry. Barcode reagents currently used label intracellular proteins in fixed and permeabilized cells and, therefore, are not suitable for studies with live cells in long-term culture prior to analysis. In this study, we report the development of fluorescent palladium-based hybrid-tag nanotrackers to barcode live cells for flow and mass cytometry dual-modal readout. We describe the preparation, physicochemical characterization, efficiency of cell internalization, and durability of these nanotrackers in live cells cultured over time. In addition, we demonstrate their compatibility with standardized cytometry reagents and protocols. Finally, we validated these nanotrackers for drug response assays during a long-term coculture experiment with two barcoded cell lines. This method represents a new and widely applicable advance for fluorescent and mass-tag barcoding that is independent of protein expression levels and can be used to label cells before long-term drug studies.


Subject(s)
Electronic Data Processing , Fluorescent Dyes , Cell Line , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Proteomics
6.
Talanta ; 226: 122092, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33676649

ABSTRACT

Nucleic acid-based molecular diagnosis has gained special importance for the detection and early diagnosis of genetic diseases as well as for the control of infectious disease outbreaks. The development of systems that allow for the detection and analysis of nucleic acids in a low-cost and easy-to-use way is of great importance. In this context, we present a combination of a nanotechnology-based approach with the already validated dynamic chemical labeling (DCL) technology, capable of reading nucleic acids with single-base resolution. This system allows for the detection of biotinylated molecular products followed by simple detection using a standard flow cytometer, a widely used platform in clinical and molecular laboratories, and therefore, is easy to implement. This proof-of-concept assay has been developed to detect mutations in KRAS codon 12, as these mutations are highly important in cancer development and cancer treatments.


Subject(s)
Nucleic Acids , Peptide Nucleic Acids , Flow Cytometry , Mutation , Nanotechnology , Nucleic Acids/genetics
7.
Nanoscale ; 13(6): 3500-3511, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33560282

ABSTRACT

In this manuscript, we report the development of a versatile, robust, and stable targeting nanocarrier for active delivery. This nanocarrier is based on bifunctionalized polymeric nanoparticles conjugated to a monoclonal antibody that allows for active targeting of either (i) a fluorophore for tracking or (ii) a drug for monitoring specific cell responses. This nanodevice can efficiently discriminate between cells in coculture based on the expression levels of cell surface receptors. As a proof of concept, we have demonstrated efficient delivery using a broadly established cell surface receptor as the target, the epidermal growth factor receptor (EGFR), which is overexpressed in several types of cancers. Additionally, a second validation of this nanodevice was successfully carried out using another cell surface receptor as the target, the cluster of differentiation 147 (CD147). Our results suggest that this versatile nanocarrier can be expanded to other cell receptors and bioactive cargoes, offering remarkable discrimination efficiency between cells with different expression levels of a specific marker. This work supports the ability of nanoplatforms to boost and improve the progress towards personalized medicine.


Subject(s)
Drug Carriers , Nanoparticles , Cell Line, Tumor , Coculture Techniques , Drug Delivery Systems , Polymers
8.
Cancer Discov ; 10(11): 1635-1644, 2020 11.
Article in English | MEDLINE | ID: mdl-33037026

ABSTRACT

Despite major therapeutic progress, most advanced solid tumors are still incurable. Cancer interception is the active way to combat cancer onset, and development of this approach within high-risk populations seems a logical first step. Until now, strategies for the identification of high-risk subjects have been based on low-sensitivity and low-specificity assays. However, new liquid biopsy assays, "the Rosetta Stone of the new biomedicine era," with the ability to identify circulating biomarkers with unprecedented sensitivity, promise to revolutionize cancer management. This review focuses on novel liquid biopsy approaches and the applications to cancer interception. Cancer interception involves the identification of biomarkers associated with developing cancer, and includes genetic and epigenetic alterations, as well as circulating tumor cells and circulating epithelial cells in individuals at risk, and the implementation of therapeutic strategies to prevent the beginning of cancer and to stop its development. Large prospective studies are needed to confirm the potential role of liquid biopsy for early detection of precancer lesions and tumors.


Subject(s)
Liquid Biopsy/methods , Neoplasms/prevention & control , Precision Medicine/methods , Humans
10.
Polymers (Basel) ; 12(6)2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32492910

ABSTRACT

Despite the large number of polymeric nanodelivery systems that have been recently developed, there is still room for improvement in terms of therapeutic efficiency. Most reported nanodevices for controlled release are based on drug encapsulation, which can lead to undesired drug leakage with a consequent reduction in efficacy and an increase in systemic toxicity. Herein, we present a strategy for covalent drug conjugation to the nanodevice to overcome this drawback. In particular, we characterize and evaluate an effective therapeutic polymeric PEGylated nanosystem for controlled pH-sensitive drug release on a breast cancer (MDA-MB-231) and two lung cancer (A549 and H520) cell lines. A significant reduction in the required drug dose to reach its half maximal inhibitory concentration (IC50 value) was achieved by conjugation of the drug to the nanoparticles, which leads to an improvement in the therapeutic index by increasing the efficiency. The genotoxic effect of this nanodevice in cancer cells was confirmed by nucleus histone H2AX specific immunostaining. In summary, we successfully characterized and validated a pH responsive therapeutic polymeric nanodevice in vitro for controlled anticancer drug release.

11.
Crit Rev Oncol Hematol ; 151: 102978, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32428812

ABSTRACT

Precision medicine was born with the development of new diagnostic techniques and targeted drugs, yielding better outcomes in cancer care. With the evolution and increasing sensitivity for detecting oncogenic drivers, liquid biopsies (LBs), specifically cell-free DNA (cfDNA) analysis, have been proposed as a minimally-invasive technique for genomic profiling. Ranging from sequencing techniques to PCR-based methods and other more complex strategies, this approach, currently applicable in some solid tumors with robust evidence, is showing promising opportunities in other cancers. However, difficulties in validating their clinical utility exist within limitation at different levels among several techniques, reporting of the results, lack of appropriate clinical trial designs, and unknown economic impact. One of the aims of the ISLB is to create recommendations to develop reliable and sustainable diagnostic, prognostic and predictive tools using LBs. This paper is addressing these objectives, helping the healthcare providers and scientific community to understand the potential of LB.


Subject(s)
Cell-Free Nucleic Acids , Liquid Biopsy , Neoplasms/pathology , Precision Medicine/methods , Biomarkers, Tumor , Humans , Societies, Medical
12.
Nanomedicine ; 24: 102120, 2020 02.
Article in English | MEDLINE | ID: mdl-31676374

ABSTRACT

A novel chemical-based orthogonal bioconjugation strategy to produce tri-functionalized nanoparticles (NPs) an chemotherapy drug, doxorubicin (DOX), a near-infrared cyanine dye (Cy7) and CRGDK homing peptide, a peptide specifically binds to neuropilin-1 (Nrp-1) overexpressed on triple negative breast cancer (TNBC) cells, has been validated. These theranostic NPs have been evaluated in vitro and in vivo using an orthotopic xenotransplant mouse model using TNBC cells. In vitro assays show that theranostic NPs improve the therapeutic index in comparison with free DOX. Remarkably, in vivo studies showed preferred location of theranostic NPs in the tumor area reducing the volume at the same level than free DOX while presenting lower side effects. This multifunctionalized theranostic nanodevice based on orthogonal conjugation strategies could be a good candidate for the treatment and monitoring of Nrp-1 overexpressing tumors. Moreover, this versatile nanodevice can be easily adapted to treat and monitor different cancer types by adapting the conjugation strategy.


Subject(s)
Carbocyanines , Doxorubicin , Drug Delivery Systems , Nanoparticles , Peptides , Theranostic Nanomedicine , Triple Negative Breast Neoplasms/drug therapy , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacology , Cell Line, Tumor , Doxorubicin/chemistry , Doxorubicin/pharmacology , Female , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasm Proteins/metabolism , Neuropilin-1/metabolism , Peptides/chemistry , Peptides/pharmacology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
13.
Sci Rep ; 9(1): 3696, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842455

ABSTRACT

Leishmaniasis and Chagas disease are endemic in many countries, and re-emerging in the developed countries. A rapid and accurate diagnosis is important for early treatment for reducing the duration of infection as well as for preventing further potential health complications. In this work, we have developed a novel colorimetric molecular assay that integrates nucleic acid analysis by dynamic chemistry (ChemNAT) with reverse dot-blot hybridization in an array format for a rapid and easy discrimination of Leishmania major and Trypanosoma cruzi. The assay consists of a singleplex PCR step that amplifies a highly homologous DNA sequence which encodes for the RNA component of the large ribosome subunit. The amplicons of the two different parasites differ between them by single nucleotide variations, known as "Single Nucleotide Fingerprint" (SNF) markers. The SNF markers can be easily identified by naked eye using a novel micro Spin-Tube device "Spin-Tube", as each of them creates a specific spot pattern. Moreover, the direct use of ribosomal RNA without requiring the PCR pre-amplification step is also feasible, further increasing the simplicity of the assay. The molecular assay delivers sensitivity capable of identifying up to 8.7 copies per µL with single mismatch specificity. The Spin-Tube thus represents an innovative solution providing benefits in terms of time, cost, and simplicity, all of which are crucial for the diagnosis of infectious disease in developing countries.


Subject(s)
Nucleotide Mapping/methods , Trypanosomatina/genetics , Trypanosomatina/isolation & purification , Chagas Disease/diagnosis , Chagas Disease/genetics , Colorimetry/methods , Leishmania major/genetics , Leishmaniasis/diagnosis , Leishmaniasis/genetics , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Hybridization/methods , Polymerase Chain Reaction/methods , RNA, Ribosomal/genetics , Sensitivity and Specificity , Trypanosoma cruzi/genetics
15.
Nanomedicine (Lond) ; 12(13): 1591-1605, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28513331

ABSTRACT

AIM: To develop an efficient nanotechnology fluorescence-based method to track cell proliferation to avoid the limitations of current cell-labeling dyes. MATERIAL & METHODS: Synthesis, PEGylation, bifunctionalization and labeling with a fluorophore (Cy5) of 200 nm polystyrene nanoparticles (NPs) were performed. These NPs were characterized and assessed for in vitro long-term monitoring of cell proliferation. RESULTS: The optimization and validation of this method to track long-term cell proliferation assays have been achieved with high reproducibility, without cell cycle disruption. This method has been successfully applied in several adherent and suspension cells including hard-to-transfect cells and isolated human primary lymphocytes. CONCLUSION: A novel approach to track efficiently cellular proliferation by flow cytometry using fluorescence labeled NPs has been successfully developed. [Formula: see text].


Subject(s)
Cell Proliferation , Cell Tracking/methods , Fluorescent Dyes/chemistry , Nanoparticles/chemistry , Polystyrenes/chemistry , Cell Cycle , Cell Line, Tumor , Feasibility Studies , Flow Cytometry , Fluorescence , Humans , Leukocytes, Mononuclear/cytology , Reproducibility of Results , Staining and Labeling , Surface Properties , Transfection
16.
Talanta ; 161: 489-496, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27769437

ABSTRACT

Over the last decade, circulating microRNAs have received attention as diagnostic and prognostic biomarkers. In particular, microRNA122 has been demonstrated to be an early and more sensitive indicator of drug-induced liver injury than the widely used biomarkers such as alanine aminotransferase and aspartate aminotransferase. Recently, microRNA122 has been used in vitro to assess the cellular toxicity of new drugs and as a biomarker for the development of a rapid test for drug overdose/liver damage. In this proof-of-concept study, we report a PCR-free and label-free detection method that has a limit of detection (3 standard deviations) of 15 fmoles of microRNA122, by integrating a dynamic chemical approach for "Single Nucleobase Labelling" with a bead-based platform (Luminex®) thereby, in principle, demonstrating the exciting prospect of rapid and accurate profiling of any microRNAs related to diseases and toxicology.


Subject(s)
MicroRNAs/analysis , Biomarkers , Limit of Detection , Microspheres , Nucleic Acid Probes , Peptide Nucleic Acids
17.
Acc Chem Res ; 45(7): 1140-52, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22390230

ABSTRACT

Nucleic acids are the foundation stone of all cellular processes. Consequently, the use of DNA or RNA to treat genetic and acquired disorders (so called gene therapy) offers enormous potential benefits. The restitution of defective genes or the suppression of malignant genes could target a range of diseases, including cancers, inherited diseases (cystic fibrosis, muscular dystrophy, etc.), and viral infections. However, this strategy has a major barrier: the size and charge of nucleic acids largely restricts their transit into eukaryotic cells. Potential strategies to solve this problem include the use of a variety of natural and synthetic nucleic acid carriers. Driven by the aim and ambition of translating this promising therapeutic approach into the clinic, researchers have been actively developing advanced delivery systems for nucleic acids for more than 20 years. A decade ago we began our investigations of solid-phase techniques to construct families of novel nucleic acid carriers for transfection. We envisaged that the solid-phase synthesis of polycationic dendrimers and derivatized polyamimes would offer distinct advantages over solution phase techniques. Notably in solid phase synthesis we could take advantage of mass action and streamlined purification procedures, while simplifying the handling of compounds with high polarities and plurality of functional groups. Parallel synthesis methods would also allow rapid access to libraries of compounds with improved purities and yields over comparable solution methodologies and facilitate the development of structure activity relationships. We also twisted the concept of the solid-phase support on its head: we devised miniaturized solid supports that provided an innovative cell delivery vehicle in their own right, carrying covalently conjugated cargos (biomolecules) into cells. In this Account, we summarize the main outcomes of this series of chemically related projects.


Subject(s)
Nucleic Acids/metabolism , Arginine/chemistry , DNA/chemistry , DNA/metabolism , Dendrimers/chemistry , Humans , Lipids/chemistry , Microspheres , Nucleic Acids/chemistry , Polyamines/chemistry , RNA/chemistry , RNA/metabolism , Solid-Phase Synthesis Techniques , Transfection
18.
Chem Biol ; 18(10): 1284-9, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22035797

ABSTRACT

The ability to screen and identify new ligands for cell surface receptors has been a long-standing goal as it might allow targeting of pharmaceutically relevant receptors, such as integrins or G protein coupled receptors. Here, we present a method to amplify hits from a library of PNA-tagged peptides. To this end, human cells, overexpressing either integrins or the CCR6 receptor, were treated with a 10,000 member PNA-encoded peptide library. Extraction of the PNA tags from the surface of the cells was followed by a PNA-tag to DNA translation and amplification enabling decoding of the tags via microarray hybridization. This approach to ligand discovery facilitates screening for differences in surface-receptor ligands and/or receptor expression between different cell types, and opens up a practical approach to PNA-tag amplification.


Subject(s)
Peptide Library , Peptide Nucleic Acids/metabolism , Peptide Nucleic Acids/pharmacology , Receptors, Cell Surface/metabolism , Binding, Competitive , Cell Line , DNA Probes , DNA, Single-Stranded , Flow Cytometry , Humans , Integrins/metabolism , Ligands , Microarray Analysis , Nucleic Acid Amplification Techniques , Peptide Nucleic Acids/chemical synthesis , Polymerase Chain Reaction , Receptors, CCR6/metabolism , Toxicity Tests
19.
PLoS One ; 6(9): e24906, 2011.
Article in English | MEDLINE | ID: mdl-21966380

ABSTRACT

The ability to efficiently and economically generate libraries of defined pieces of DNA would have a myriad of applications, not least in the area of defined or directed sequencing and synthetic biology, but also in applications associated with encoding and tagging. In this manuscript DNA microarrays were used to allow the linear amplification of immobilized DNA sequences from the array followed by PCR amplification. Arrays of increasing sophistication (1, 10, 3,875, 10,000 defined sequences) were used to validate the process, with sequences verified by selective hybridization to a complementary DNA microarray and DNA sequencing, which demonstrated a PCR error rate of 9.7×10(-3)/site/duplication. This technique offers an economical and efficient way of producing specific DNA libraries of hundreds to thousands of members with the DNA-arrays being used as "factories" allowing specific DNA oligonucleotide pools to be generated. We also found substantial variance observed between the sequence frequencies found via Solexa sequencing and microarray analysis, highlighting the care needed in the interpretation of profiling data.


Subject(s)
DNA/genetics , Oligonucleotide Array Sequence Analysis/methods , Oligonucleotides/genetics , Algorithms , Base Sequence , DNA/chemistry , Nucleic Acid Hybridization/methods , Polymerase Chain Reaction/methods , Reproducibility of Results , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...