Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37374612

ABSTRACT

Fabric permittivity is critical for the manufacturing of wearable sensors and antennas as well as predicting how fabrics interact with electromagnetic fields. Engineers should also understand how permittivity changes under different temperatures, densities, and moisture content values, or when several fabrics are mixed in aggregates, when designing future applications such as microwave dryers. The permittivity of cotton, polyester, and polyamide fabric aggregates is investigated in this paper for a wide range of compositions, moisture content levels, density values, and temperature conditions around the 2.45 GHz ISM band using a bi-reentrant resonant cavity. The obtained results show extremely comparable responses for all characteristics investigated for single and binary fabric aggregates. Permittivity always increases as temperature, density, or moisture content levels rise. Moisture content is the most influential characteristic, causing enormous variations in the permittivity of aggregates. Fitting equations are supplied for all data, with exponential functions used to accurately model variation in temperature and polynomial functions employed to precisely model density and moisture content variations with low error levels. The temperature permittivity dependence of single fabrics without the influence of air gaps is also extracted from fabric and air aggregates by using complex refractive index equations for two-phase mixtures.

2.
Foods ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201129

ABSTRACT

This study uncovered the impacts of microwave (MW) treatments compared to conventional pasteurization (TP) on the quality of functional citrus-maqui beverages, with added sucrose or stevia. The influence of these thermal treatments on the microbiological burden and phytochemical composition was determined by processing under two MW power levels (600 W and 800 W) and TP at 85 °C for 15 s for 60 days at room temperature (20 °C). The results indicated that, beyond the microbiological quality achieved in the juices treated by both MW and TP technology, there were no differences among the treatments regarding the stability of vitamin C, anthocyanin, and flavanone concentrations. However, anthocyanins were more stable in those beverages with sucrose added, rendering a better red color. Besides, all treatments ensured microbiological stability throughout the entire storage time. In conclusion, MW treatment could be considered as an alternative to TP, which ensures microbial safety, protecting functional compounds associated with health effects.

3.
Food Res Int ; 137: 109640, 2020 11.
Article in English | MEDLINE | ID: mdl-33233219

ABSTRACT

Microwave processing can be a valid alternative to conventional heating for different types of products. It enables a more efficient heat transfer in the food matrix, resulting in higher quality products. However, for many food products a uniform temperature distribution is not possible because of heterogeneities in their physical properties and non-uniformtiy in the electric field pattern. Hence, the effectiveness of microwave inactivation treatments is influenced by both intrinsic (differences between cells) and extrinsic variability (non-uniform temperature). Interpreting the results of the process and considering its impact on microbial inactivation is essential to ensure effective and efficient processing. In this work, we quantified the variability in microbial inactivation attained in a microwave pasteurization treatment with a tunnel configuration at pilot-plant scale. The configuration of the equipment makes it impossible to measure the product temperature during treatment. For that reason, variability in microbial counts was measured using Biological Inactivation Indicators (BIIs) based on spherical particles of alginate inoculated with spores of Bacillus spp. The stability of the BIIs and the uncertainty associated to them was assessed using preliminary experiments in a thermoresistometer. Then, they were introduced in the food product to analyse the microbial inactivation in different points of the products during the microwave treatment. Experiments were made in a vegetable soup and a fish-based animal by-product (F-BP). The results show that the variation in the microbial counts was higher than expected based on the biological variability estimated in the thermoresistometer and the uncertainty of the BIIs. This is due to heterogeneities in the temperature field (measured using a thermographic camera), which were higher in the F-BP than in the vegetable soup. Therefore, for the process studied, extrinsic variability was more relevant than intrinsic variability. The methodology presented in this work can be a valid method to evaluate pasteurization treatments of foods processed by heating, providing valuable information of the microbial inactivation achieved. It can contribute to design microwave processes for different types of products and for product optimization.


Subject(s)
Bacillus cereus , Heating , Animals , Environmental Biomarkers , Microwaves , Spores, Bacterial
4.
Int J Neural Syst ; 30(4): 2050013, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32114841

ABSTRACT

Emotion estimation systems based on brain and physiological signals such as electro encephalography (EEG), blood-volume pressure (BVP), and galvanic skin response (GSR) are gaining special attention in recent years due to the possibilities they offer. The field of human-robot interactions (HRIs) could benefit from a broadened understanding of the brain and physiological emotion encoding, together with the use of lightweight software and cheap wearable devices, and thus improve the capabilities of robots to fully engage with the users emotional reactions. In this paper, a previously developed methodology for real-time emotion estimation aimed for its use in the field of HRI is tested under realistic circumstances using a self-generated database created using dynamically evoked emotions. Other state-of-the-art, real-time approaches address emotion estimation using constant stimuli to facilitate the analysis of the evoked responses, remaining far from real scenarios since emotions are dynamically evoked. The proposed approach studies the feasibility of the emotion estimation methodology previously developed, under an experimentation paradigm that imitates a more realistic scenario involving dynamically evoked emotions by using a dramatic film as the experimental paradigm. The emotion estimation methodology has proved to perform on real-time constraints while maintaining high accuracy on emotion estimation when using the self-produced dynamically evoked emotions multi-signal database.


Subject(s)
Cerebral Cortex/physiology , Electroencephalography/methods , Emotions/physiology , Evoked Potentials/physiology , Galvanic Skin Response/physiology , Heart Rate/physiology , Signal Processing, Computer-Assisted , Adult , Databases, Factual , Humans
5.
Sensors (Basel) ; 17(6)2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28590423

ABSTRACT

In this paper, a novel technique to achieve precise temperatures in food sterilization has been proposed. An accurate temperature profile is needed in order to reach a commitment between the total removal of pathogens inside the product and the preservation of nutritional and organoleptic characteristics. The minimal variation of the target temperature in the sample by means of a monitoring and control software platform, allowing temperature stabilization over 100 °C, is the main goal of this work. A cylindrical microwave oven, under pressure conditions and continuous control of the microwave supply power as function of the final temperature inside the sample, has been designed and developed with conditions of single-mode resonance. The uniform heating in the product is achieved by means of sample movement and the self-regulated power control using the measured temperature. Finally, for testing the sterilization of food with this technology, specific biological validation based on Bacillus cereus as a biosensor of heat inactivation has been incorporated as a distribution along the sample in the experimental process to measure the colony-forming units (CFUs) for different food samples (laboratory medium, soup, or fish-based animal by-products). The obtained results allow the validation of this new technology for food sterilization with precise control of the microwave system to ensure the uniform elimination of pathogens using high temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...