Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Ann Bot ; 129(5): 593-606, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35134835

ABSTRACT

BACKGROUND AND AIMS: Plants have evolved complex mechanisms to fight against pathogens. Among these mechanisms, pattern-triggered immunity (PTI) relies on the recognition of conserved microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs, respectively) by membrane-bound receptors. Indeed, PTI restricts virus infection in plants and, in addition, BRI1-associated kinase 1 (BAK1), a central regulator of PTI, plays a role in antiviral resistance. However, the compounds that trigger antiviral defences, along with their molecular mechanisms of action, remain mostly elusive. Herein, we explore the role of a fungal extracellular subtilase named AsES in its capacity to trigger antiviral responses. METHODS: In this study, we obtained AsES by recombinant expression, and evaluated and characterized its capacity to trigger antiviral responses against Tobacco mosaic virus (TMV) by performing time course experiments, analysing gene expression, virus movement and callose deposition. KEY RESULTS: The results of this study provide direct evidence that exogenous treatment with recombinant AsES increases a state of resistance against TMV infection, in both arabidopsis and Nicotiana benthamiana plants. Also, the antiviral PTI response exhibited by AsES in arabidopsis is mediated by the BAK1/SERK3 and BKK1/SERK4 co-receptors. Moreover, AsES requires a fully active salicylic acid (SA) signalling pathway to restrict the TMV movement by inducing callose deposition. Additionally, treatment with PSP1, a biostimulant based on AsES as the active compound, showed an increased resistance against TMV in N. benthamiana and tobacco plants. CONCLUSIONS: AsES is a fungal serine protease which triggers antiviral responses relying on a conserved mechanism by means of the SA signalling pathway and could be exploited as an effective and sustainable biotechnology strategy for viral disease management in plants.


Subject(s)
Arabidopsis , Tobacco Mosaic Virus , Virus Diseases , Antiviral Agents/metabolism , Arabidopsis/genetics , Immunity , Peptide Hydrolases/metabolism , Plant Diseases , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Nicotiana/genetics , Tobacco Mosaic Virus/physiology
2.
Sci Rep ; 10(1): 8196, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32424195

ABSTRACT

An increasing interest in the development of products of natural origin for crop disease and pest control has emerged in the last decade. Here we introduce a new family of strawberry acyl glycosides (SAGs) formed by a trisaccharide (GalNAc-GalNAc-Glc) and a monounsaturated fatty acid of 6 to 12 carbon atoms linked to the glucose unit. Application of SAGs to Arabidopsis thaliana (hereafter Arabidopsis) plants triggered a transient oxidative burst, callose deposition and defense gene expression, accompanied by increased protection against two phytopathogens, Pseudomonas viridiflava and Botrytis cinerea. SAGs-induced disease protection was also demonstrated in soybean infected with the causal agent of target spot, Corynespora cassiicola. SAGs were shown to exhibit important antimicrobial activity against a wide-range of bacterial and fungal phytopathogens, most probably through membrane destabilization, and the potential use of SAGs as a biofungicide for postharvest disease protection was demonstrated on lemon fruits infected with Penicillium digitatum. Plant growth promotion by application of SAGs was shown by augmented primary root elongation, secondary roots development and increased siliques formation in Arabidopsis, whereas a significant increment in number of seed pods was demonstrated in soybean. Stimulation of radicle development and the induction of an auxin-responsive reporter system (DR5::GUS) in transgenic Arabidopsis plants, suggested that SAGs-stimulated growth at least partly acts through the auxin response pathway. These results indicate that strawberry fatty acid glycosides are promising candidates for the development of environmental-friendly products for disease management in soybean and lemon.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fragaria/chemistry , Glycosides/chemistry , Glycosides/pharmacology , Plant Diseases/prevention & control , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/microbiology , Biological Assay , Botrytis/drug effects , Botrytis/physiology , Plant Diseases/microbiology , Pseudomonas/drug effects , Pseudomonas/physiology
3.
Mol Plant Pathol ; 21(2): 147-159, 2020 02.
Article in English | MEDLINE | ID: mdl-31769595

ABSTRACT

Acremonium strictum elicitor subtilisin (AsES) is a 34-kDa serine-protease secreted by the strawberry fungal pathogen A. strictum. On AsES perception, a set of defence reactions is induced, both locally and systemically, in a wide variety of plant species and against pathogens of alternative lifestyles. However, it is not clear whether AsES proteolytic activity is required for triggering a defence response or if the protein itself acts as an elicitor. To investigate the necessity of the protease activity to activate the defence response, AsES coding sequences of the wild-type gene and a mutant on the active site (S226A) were cloned and expressed in Escherichia coli. Our data show that pretreatment of Arabidopsis plants with inactive proteins, i.e. inhibited with phenylmethylsulphonyl fluoride (PMSF) and mutant, resulted in an increased systemic resistance to Botrytis cinerea and expression of defence-related genes in a temporal manner that mimics the effect already reported for the native AsES protein. The data presented in this study indicate that the defence-eliciting property exhibited by AsES is not associated with its proteolytic activity. Moreover, the enhanced expression of some immune marker genes, seedling growth inhibition and the involvement of the co-receptor BAK1 observed in plants treated with AsES suggests that AsES is being recognized as a pathogen-associated molecular pattern by a leucine-rich repeat receptor. The understanding of the mechanism of action of AsES will contribute to the development of new breeding strategies to confer durable resistance in plants.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Fungal Proteins/metabolism , Subtilisin/metabolism , Botrytis/pathogenicity , Fungal Proteins/genetics , Phenylmethylsulfonyl Fluoride/metabolism , Plant Diseases/microbiology , Plant Immunity/physiology , Subtilisin/genetics
4.
Plant Physiol Biochem ; 123: 400-405, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29306187

ABSTRACT

HeT (1-0-galloyl-2,3; 4,6-bis-hexahydroxydiphenoyl-ß-D-glucopyranose) is a penta-esterified ellagitannin obtained from strawberry leaves. Previous studies have shown that foliar application of HeT prior to inoculation with a virulent pathogen increases the resistance toward Colletotrichum acutatum in strawberry plants and to Xanthomonas citri subsp. citri in lemon plants. In this work we report that HeT induces an immediate leak of electrolytes, the hyperpolarization of the cellular membrane, a rapid Ca2+ influx to the cytoplasm during the first few seconds, which in turn modulates the accumulation of nitric oxide 5 min after treatment. At longer times, a biphasic accumulation of H2O2 with peaks at 2 and 5 h post treatment could be observed. In addition, HeT elicited the increase of alternative oxidase capacity during the first 12 h post treatment.


Subject(s)
Calcium/metabolism , Fragaria/metabolism , Hydrogen Peroxide/metabolism , Hydrolyzable Tannins/pharmacology , Nitric Oxide/metabolism , Calcium Signaling , Electrolytes/metabolism , Fragaria/microbiology , Plant Diseases/microbiology , Xanthomonas/metabolism
5.
Plant Cell Rep ; 37(2): 239-250, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29032427

ABSTRACT

KEY MESSAGE: Genes associated with plant mechanical stimulation were found in strawberry genome. A soft mechanical stimulation (SMS) induces molecular and biochemical changes in strawberry plants, conferring protection against Botrytis cinerea. Plants have the capacity to induce a defense response after exposure to abiotic stresses acquiring resistance towards pathogens. It was reported that when leaves of Arabidopsis thaliana were wounded or treated with a soft mechanical stimulation (SMS), they could resist much better the attack of the fungal pathogen Botrytis cinerea, and this effect was accompanied by an oxidative burst and the expression of touch-inducible genes (TCH). However, no further work was carried out to better characterize the induced defense response. In this paper, we report that TCH genes were identified for first time in the genomes of the strawberry species Fragaria ananassa (e.g. FaTCH2, FaTCH3, FaTCH4 and FaCML39) and Fragaria vesca (e.g. FvTCH2, FvTCH3, FvTCH4 and FvCML39). Phylogenetic studies revealed that F. ananassa TCH genes exhibited high similarity with the orthologous of F. vesca and lower with A. thaliana ones. We also present evidence that after SMS treatment on strawberry leaves, plants activate a rapid oxidative burst, callose deposition, and the up-regulation of TCH genes as well as plant defense genes such as FaPR1, FaCHI2-2, FaCAT, FaACS1 and FaOGBG-5. The latter represents the first report showing that TCH- and defense-induced genes participate in SMS-induced resistance in plants, bringing a rational explanation why plants exposed to a SMS treatment acquired an enhance resistance toward B. cinerea.


Subject(s)
Disease Resistance/genetics , Fragaria/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Stress, Mechanical , Botrytis/physiology , Cell Wall/genetics , Cell Wall/metabolism , Fragaria/classification , Fragaria/microbiology , Glucans/metabolism , Phylogeny , Plant Diseases/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism
6.
Mol Plant Microbe Interact ; 31(1): 46-60, 2018 01.
Article in English | MEDLINE | ID: mdl-28635519

ABSTRACT

The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.


Subject(s)
Acremonium/physiology , Disease Resistance , Fragaria/immunology , Fragaria/microbiology , Fungal Proteins/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Respiratory Burst , Subtilisin/metabolism , Cell Death/genetics , Cell Wall/metabolism , Fluorescence , Fragaria/genetics , Gene Expression Regulation, Plant , Genes, Plant , Lignin/metabolism , Necrosis , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/genetics , Plant Leaves/microbiology , Salicylic Acid/metabolism
7.
Eng Life Sci ; 17(8): 908-915, 2017 Aug.
Article in English | MEDLINE | ID: mdl-32624839

ABSTRACT

In this work, we propose eigenvalue optimization combined with Lyapunov theory concepts to ensure stability of the Embden-Meyerhof-Parnas pathway, the pentose-phosphate pathway, the phosphotransferase system and fermentation reactions of Escherichia coli. We address the design of a metabolic network for the maximization of different metabolite production rates. The first case study focuses on serine production, based on a model that consists of 18 differential equations corresponding to dynamic mass balances for extracellular glucose and intracellular metabolites, and thirty kinetic rate expressions. A second case study addresses the design problem to maximize ethanol production, based on a dynamic model that involves mass balances for 25 metabolites and 38 kinetic rate equations. The nonlinear optimization problem including stability constraints has been solved with reduced space Successive Quadratic Programming techniques. Numerical results provide useful insights on the stability properties of the studied kinetic models.

8.
Plant Physiol Biochem ; 97: 443-50, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26562675

ABSTRACT

The newly characterized elicitor AsES obtained from Acremonium strictum induces a strong defence response in strawberry plants and confers plants resistance against the fungal pathogen Colletotricum acutatum the casual agent of anthracnose disease. Previous studies showed that AsES causes the accumulation of reactive oxygen species (ROS) that peaked 4 h post treatment (hpt), but due to the experimental approach used it was not clear whether the accumulation of ROS observed was intracellular or extracellular or took place as a single peak. By using a different experimental setup, a more complex early events associated to the activation of the innate immunity were observed. In this paper we report that strawberry plant cells treated with AsES exhibits a triphasic production of H2O2 and a rapid intracellular accumulation of NO. The first phase consists in a progressive extracellular accumulation of H2O2 that starts immediately after the treatment with AsES and is preceded by a rapid and transient cell membrane depolarization. During this phase takes place also a rapid intracellular accumulation of NO. Microscopic observations of mesophyll cells treated with AsES reveals that NO accumulates at the chloroplast. After the first extracellular H2O2 production phase, two intracellular H2O2 accumulation events occur, the first 2 hpt, and the second 7 hpt. Cells treated with AsES also show a transient increase of ion leakage, and a progressive alkalinization of the extracellular medium.


Subject(s)
Acremonium/chemistry , Cell Membrane/metabolism , Fragaria/metabolism , Fungal Proteins/pharmacology , Membrane Potentials/drug effects , Nitric Oxide/metabolism , Respiratory Burst/drug effects , Alkalies/metabolism , Arylsulfonates/metabolism , Cell Membrane/drug effects , Cell Respiration/drug effects , Cell Survival/drug effects , Extracellular Space/drug effects , Extracellular Space/metabolism , Fluorescence , Fragaria/cytology , Fragaria/drug effects , Hydrogen Peroxide/metabolism , Intracellular Space/drug effects , Intracellular Space/metabolism , Ions , Mesophyll Cells/drug effects , Mesophyll Cells/metabolism , Suspensions , Time Factors
9.
Plant Physiol Biochem ; 54: 10-6, 2012 May.
Article in English | MEDLINE | ID: mdl-22366637

ABSTRACT

Many authors have reported interactions between strawberry cultivars and pathogenic microorganisms, yet little is known about the mechanisms triggered in the plant. In this paper we examine the participation of the salicylic acid (SA) signaling pathway involved in the response of Fragaria x ananassa cv. Pájaro plants to pathogens. Strawberry plants were challenged with the virulent strain M11 of Colletotrichum acutatum, or with the avirulent strain M23 of Colletotrichum fragariae which confers resistance to the former. Our study showed that the isolate M23 induced a temporal SA accumulation that was accompanied with the induction of PR-1 gene expression in strawberry plants. Such events occured after the oxidative burst, evaluated as the accumulation of hydrogen peroxide and superoxide anion, and many hours before the protection could be detected. Similar results were obtained with exogenously applied SA. Results obtained supports the hypothesis that strawberry plants activate a SA mediated defense mechanisms that is effective against a causal agent of anthracnose. In contrast, plants inoculated with M11 did not show oxidative burst, SA accumulation or PR1 gene induction. This is the first report about a defense response signaling pathway studied in strawberry plants.


Subject(s)
Colletotrichum , Fragaria/physiology , Genes, Plant , Plant Diseases/microbiology , Plant Immunity/physiology , Plant Proteins/genetics , Salicylic Acid/metabolism , Adaptation, Physiological/genetics , Fragaria/genetics , Fragaria/microbiology , Gene Expression , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plant Immunity/genetics , Salicylic Acid/pharmacology , Signal Transduction , Superoxides/metabolism
10.
Phytochem Anal ; 22(3): 268-71, 2011.
Article in English | MEDLINE | ID: mdl-21360621

ABSTRACT

INTRODUCTION: In plants, the ROS (reactive oxygen species) level is tightly regulated because their accumulation produces irreversible damage leading to cell death. However, ROS accumulation plays a key role in plant signaling under biotic or abiotic stress. Although various methods were reported to evaluate ROS accumulation, they are restricted to model plants or provide only qualitative information. OBJECTIVE: Develop a simple method to quantify superoxide radicals produced in plant tissues, based on the selective extraction of the formazan produced after nitroblue tetrazolium (NBT) reduction in histochemical staining. METHODOLOGY: Plant leaves were stained with a standard NBT method and the formazan precipitated in tissues was selectively extracted using chloroform. The organic phase was dried and formazan residue dissolved in dimethylsulfoxide-potassium hydroxide and quantified by spectrophotometry. The method was tested in strawberry plant leaves under different stressing conditions. RESULTS: Formazan extracted from leaves subjected to stress conditions showed similar absorption spectra to those obtained from standard solutions using pure formazan. Calibration curves showed a linear relationship between absorbance and formazan amounts, within the range 0.5-8 µg. Outcomes suggested that formazan was retained in the solid residue of leaf tissues. This protocol allowed us to quantify superoxide radicals produced under different stress conditions. CONCLUSIONS: Chloroform allowed a selective formazan extraction and removal of potential endogenous, exogenous or procedural artefacts that may interfere with the quantitative determination. This protocol can be used to quantify the superoxide produced in plant tissues using any traditional qualitative NBT histochemical staining method.


Subject(s)
Formazans/analysis , Fragaria/metabolism , Nitroblue Tetrazolium , Superoxides/analysis , Calibration , Colletotrichum/pathogenicity , Formazans/chemistry , Formazans/isolation & purification , Fragaria/drug effects , Fragaria/microbiology , Histocytochemistry , Indicators and Reagents , Paraquat/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/microbiology , Solubility , Spectrophotometry/methods , Staining and Labeling/methods , Stress, Physiological , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...