Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 285: 127786, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38820703

ABSTRACT

The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.

2.
Pathogens ; 12(11)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003808

ABSTRACT

This study addresses the variability of the mitochondrial cytochrome oxidase subunit I (COI) and 16S rDNA (16S), and nuclear internal transcriber spacer ITS2 (ITS2) genes in a set of field-collected samples of the cattle tick, Rhipicephalus microplus (Canestrini, 1888), and in geo-referenced sequences obtained from GenBank. Since the tick is currently considered to be a complex of cryptic taxa in several regions of the world, the main aims of the study are (i) to provide evidence of the clades of the tick present in the Neotropics, (ii) to explore if there is an effect of climate traits on the divergence rates of the target genes, and (iii) to check for a relationship between geographical and genetic distance among populations (the closest, the most similar, meaning for slow spread). We included published sequences of Rhipicephalus annulatus (Nearctic, Afrotropical, and Mediterranean) and R. microplus (Afrotropical, Indomalayan) to fully characterize the Neotropical populations (total: 74 16S, 44 COI, and 49 ITS2 sequences included in the analysis). Only the clade A of R. microplus spread in the Nearctic-Neotropics. Both the K and Lambda's statistics, two measures of phylogenetic signal, support low divergence rates of the tested genes in populations of R. microplus in the Neotropics. These tests demonstrate that genetic diversity of the continental populations does not correlate either with the geographic distance among samples or with environmental variables. The low variability of these genes may be due to a combination of factors like (i) the recent introduction of the tick in the Neotropics, (ii) a large, effective, and fast exchange of populations, and (iii) a low effect of climate on the evolution rates of the target genes. These results have implications for the ecological studies and control of cattle tick infestations.

3.
Parasit Vectors ; 16(1): 242, 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37468955

ABSTRACT

BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.


Subject(s)
Food Hypersensitivity , Ixodes , Tick Bites , Animals , Humans , Zebrafish/metabolism , Saliva , Galactose , Immunoglobulin E , Food Hypersensitivity/etiology , Arthropod Proteins , Immunoglobulin M , Mammals
4.
iScience ; 26(5): 106697, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37168564

ABSTRACT

Tick microbiota can be targeted for the control of tick-borne diseases such as human granulocytic anaplasmosis (HGA) caused by model pathogen, Anaplasma phagocytophilum. Frankenbacteriosis is inspired by Frankenstein and defined here as paratransgenesis of tick symbiotic/commensal bacteria to mimic and compete with tick-borne pathogens. Interactions between A. phagocytophilum and symbiotic Sphingomonas identified by metaproteomics analysis in Ixodes scapularis midgut showed competition between both bacteria. Consequently, Sphingomonas was selected for frankenbacteriosis for the control of A. phagocytophilum infection and transmission. The results showed that Franken Sphingomonas producing A. phagocytophilum major surface protein 4 (MSP4) mimic pathogen and reduce infection in ticks by competition and interaction with cell receptor components of infection. Franken Sphingomonas-MSP4 transovarial and trans-stadial transmission suggests that tick larvae with genetically modified Franken Sphingomonas-MSP4 could be produced in the laboratory and released in the field to compete and replace the wildtype populations with associated reduction in pathogen infection/transmission and HGA disease risks.

5.
PLoS One ; 18(1): e0280412, 2023.
Article in English | MEDLINE | ID: mdl-36656809

ABSTRACT

BACKGROUND: Excessive and irrational use of antibiotics as growth promoters in poultry has been one of key factors contributing to increased emergence of antibiotics resistant bacteria. Several alternatives for antibiotic growth promoters are being sought, and the search for effective probiotics to be used as feed additives is amongst the promising ones. Our study aimed to isolate and test potential probiotics bacteria from cloacal swabs of various indigenous chicken (Gallus domesticus) breeds from rural outskirts of the Kathmandu valley (Nepal). METHODS: Selective isolation of probiotics was conducted by micro-aerophilic enrichment of sample in MRS Broth at 37°C, followed by culturing on MRS agar supplemented with 5 g/L of CaCO3. Isolated bacterial colonies producing transparent halo were selected as potential lactic acid bacteria (LAB), and tested for their antibacterial activity, phenotypic and biochemical characteristics, acidic yield, and tolerance to acid and bile. RESULTS: A total of 90 potential LAB were isolated from cloacal samples collected from 41 free-ranging chickens of indigenous breeds. Of these, 52 LAB isolates (57%) showed variable antibacterial activity to at least one bacterial pathogen. Of 52 LAB, 46 isolates fulfilled phenotypic and biochemical criteria of Lactobacillus spp. Of these, 37 isolates produced varying percentage yields of lactic acid, 27 isolates showed survival at pH 3.0, and 17 isolates showed survival tolerances in the presence of 0.3% and 0.5% bile salts for 24 hours. Phylogenetic analysis of 16S rDNA sequencing of LAB isolates fulfilling in vitro probiotics properties showed that 3 isolates had genetic identity of 99.38% with Lactobacillus plantarum, while one isolate was genetically similar (99.85%) with the clade of L. reuteri, L. antri and L. panis. CONCLUSION: Our study identified four Lactobacillus spp. strains having potential probiotics properties. Further investigations are needed to evaluate these isolates to be used as poultry probiotics feed supplement.


Subject(s)
Lactobacillales , Probiotics , Animals , Chickens/microbiology , Phylogeny , Nepal , Lactobacillus , Anti-Bacterial Agents/pharmacology , Poultry/genetics , Acids/pharmacology , Probiotics/pharmacology , RNA, Ribosomal, 16S/genetics
6.
Vaccines (Basel) ; 10(12)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36560405

ABSTRACT

Anaplasma phagocytophilum Major surface protein 4 (MSP4) plays a role during infection and multiplication in host neutrophils and tick vector cells. Recently, vaccination trials with the A. phagocytophilum antigen MSP4 in sheep showed only partial protection against pathogen infection. However, in rabbits immunized with MSP4, this recombinant antigen was protective. Differences between rabbit and sheep antibody responses are probably associated with the recognition of non-protective epitopes by IgG of immunized lambs. To address this question, we applied quantum vaccinomics to identify and characterize MSP4 protective epitopes by a microarray epitope mapping using sera from vaccinated rabbits and sheep. The identified candidate protective epitopes or immunological quantum were used for the design and production of a chimeric protective antigen. Inhibition assays of A. phagocytophilum infection in human HL60 and Ixodes scapularis tick ISE6 cells evidenced protection by IgG from sheep and rabbits immunized with the chimeric antigen. These results supported that the design of new chimeric candidate protective antigens using quantum vaccinomics to improve the protective capacity of antigens in multiple hosts.

8.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208966

ABSTRACT

Mycobacteriosis affects wild fish and aquaculture worldwide, and alternatives to antibiotics are needed for an effective and environmentally sound control of infectious diseases. Probiotics have shown beneficial effects on fish growth, nutrient metabolism, immune responses, disease prevention and control, and gut microbiota with higher water quality. However, the identification and characterization of the molecules and mechanisms associated with probiotics is a challenge that requires investigation. To address this challenge, herein we used the zebrafish model for the study of the efficacy and mechanisms of probiotic interventions against tuberculosis. First, bacteria from fish gut microbiota were identified with high content of the surface glycotope Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) that has been shown to induce protective immune responses. The results showed that probiotics of selected bacteria with high α-Gal content, namely Aeromonas veronii and Pseudomonas entomophila, were biosafe and effective for the control of Mycobacterium marinum. Protective mechanisms regulating immunity and metabolism activated in response to α-Gal and probiotics with high α-Gal content included modification of gut microbiota composition, B-cell maturation, anti-α-Gal antibodies-mediated control of mycobacteria, induced innate immune responses, beneficial effects on nutrient metabolism and reduced oxidative stress. These results support the potential of probiotics with high -Gal content for the control of fish mycobacteriosis and suggested the possibility of exploring the development of combined probiotic treatments alone and in combination with -Gal for the control of infectious diseases.

9.
Front Immunol ; 12: 704621, 2021.
Article in English | MEDLINE | ID: mdl-34322135

ABSTRACT

The lack of tools for the precise manipulation of the tick microbiome is currently a major limitation to achieve mechanistic insights into the tick microbiome. Anti-tick microbiota vaccines targeting keystone bacteria of the tick microbiota alter tick feeding, but their impact on the taxonomic and functional profiles of the tick microbiome has not been tested. In this study, we immunized a vertebrate host model (Mus musculus) with live bacteria vaccines targeting keystone (i.e., Escherichia-Shigella) or non-keystone (i.e., Leuconostoc) taxa of tick microbiota and tested the impact of bacterial-specific antibodies (Abs) on the structure and function of tick microbiota. We also investigated the effect of these anti-microbiota vaccines on mice gut microbiota composition. Our results showed that the tick microbiota of ticks fed on Escherichia coli-immunized mice had reduced Escherichia-Shigella abundance and lower species diversity compared to ticks fed on control mice immunized with a mock vaccine. Immunization against keystone bacteria restructured the hierarchy of nodes in co-occurrence networks and reduced the resistance of the bacterial network to taxa removal. High levels of E. coli-specific IgM and IgG were negatively correlated with the abundance of Escherichia-Shigella in tick microbiota. These effects were not observed when Leuconostoc was targeted with vaccination against Leuconostoc mesenteroides. Prediction of functional pathways in the tick microbiome using PICRUSt2 revealed that E. coli vaccination reduced the abundance of lysine degradation pathway in tick microbiome, a result validated by qPCR. In contrast, the gut microbiome of immunized mice showed no significant alterations in the diversity, composition and abundance of bacterial taxa. Our results demonstrated that anti-tick microbiota vaccines are a safe, specific and an easy-to-use tool for manipulation of vector microbiome. These results guide interventions for the control of tick infestations and pathogen infection/transmission.


Subject(s)
Antibodies, Bacterial/immunology , Bacteria , Bacterial Vaccines , Gastrointestinal Microbiome/immunology , Ixodes , Animals , Bacteria/classification , Bacteria/immunology , Bacterial Vaccines/immunology , Bacterial Vaccines/pharmacology , Ixodes/immunology , Ixodes/microbiology , Mice
10.
Viruses ; 13(4)2021 04 19.
Article in English | MEDLINE | ID: mdl-33921873

ABSTRACT

Coronavirus-like organisms have been previously identified in Arthropod ectoparasites (such as ticks and unfed cat flea). Yet, the question regarding the possible role of these arthropods as SARS-CoV-2 passive/biological transmission vectors is still poorly explored. In this study, we performed in silico structural and binding energy calculations to assess the risks associated with possible ectoparasite transmission. We found sufficient similarity between ectoparasite ACE and human ACE2 protein sequences to build good quality 3D-models of the SARS-CoV-2 Spike:ACE complex to assess the impacts of ectoparasite mutations on complex stability. For several species (e.g., water flea, deer tick, body louse), our analyses showed no significant destabilisation of the SARS-CoV-2 Spike:ACE complex, suggesting these species would bind the viral Spike protein. Our structural analyses also provide structural rationale for interactions between the viral Spike and the ectoparasite ACE proteins. Although we do not have experimental evidence of infection in these ectoparasites, the predicted stability of the complex suggests this is possible, raising concerns of a possible role in passive transmission of the virus to their human hosts.


Subject(s)
Arthropod Proteins/metabolism , Arthropods/metabolism , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropods/chemistry , Arthropods/classification , Arthropods/genetics , Binding Sites , COVID-19/transmission , Ectoparasitic Infestations/parasitology , Humans , Models, Molecular , Mutation , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Phylogeny , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Sequence Homology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
11.
Ticks Tick Borne Dis ; 12(2): 101624, 2021 03.
Article in English | MEDLINE | ID: mdl-33418339

ABSTRACT

Exploring tick associations with complex microbial communities and single-microbial partners, especially intracellular symbionts, has become crucial to understand tick biology. Of particular interest are the underlying interactions with biological consequences i.e. tick fitness, vector competence. In this study, we first sequenced the 16S rRNA bacterial phylogenetic marker in adult male ticks of Hyalomma lusitanicum collected from 5 locations in the province of Cáceres to explore the composition of its microbial community. Overall, 16S rRNA sequencing results demonstrated that the microbial community of H. lusitanicum is mostly dominated by Francisella-like endosymbionts (FLEs) (ranging from 52% to 99% of relative abundance) suggesting it is a key taxon within the microbial community and likely a primary endosymbiont. However, further research is required to explore the mechanisms underlying the interaction between FLEs and H. lusitanicum.


Subject(s)
Francisella/physiology , Ixodidae/microbiology , Microbiota , Symbiosis , Animals , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Spain
12.
Article in English | MEDLINE | ID: mdl-32211341

ABSTRACT

Ticks are arthropod ectoparasite vectors of pathogens and the cause of allergic reactions affecting human health worldwide. In humans, tick bites can induce high levels of immunoglobulin E antibodies against the carbohydrate Galα1-3Galß1-(3)4GlcNAc-R (α-Gal) present in glycoproteins and glycolipids from tick saliva that mediate anaphylactic reactions known as the alpha-Gal syndrome (AGS) or red meat allergy. In this study, a new animal model was developed using zebrafish for the study of allergic reactions and the immune mechanisms in response to tick salivary biogenic substances and red meat consumption. The results showed allergic hemorrhagic anaphylactic-type reactions and abnormal behavior patterns likely in response to tick salivary toxic and anticoagulant biogenic compounds different from α-Gal. However, the results showed that only zebrafish previously exposed to tick saliva developed allergic reactions to red meat consumption with rapid desensitization and tolerance. These allergic reactions were associated with tissue-specific Toll-like receptor-mediated responses in types 1 and 2 T helper cells (TH1 and TH2) with a possible role for basophils in response to tick saliva. These results support previously proposed immune mechanisms triggering the AGS and provided evidence for new mechanisms also potentially involved in the AGS. These results support the use of the zebrafish animal model for the study of the AGS and other tick-borne allergies.


Subject(s)
Food Hypersensitivity/immunology , Hypersensitivity/immunology , Red Meat , Rhipicephalus sanguineus/immunology , Trisaccharides/immunology , Anaphylaxis/immunology , Anaphylaxis/physiopathology , Animals , Antibodies/blood , Behavior, Animal , Dinoprostone , Disease Models, Animal , Female , Hypersensitivity/physiopathology , Intestines/immunology , Kidney/immunology , Male , Saliva/chemistry , Saliva/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Zebrafish
13.
Int J Food Microbiol ; 319: 108472, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-31901751

ABSTRACT

The interaction of typical host adapted enteric bacterial pathogens with fresh produce grown in fields is complex. These interactions can be more pronounced in co-managed or sustainable farms where animal operations are, by design, close to fresh produce, and growers frequently move between the two production environments. The primary objectives of this study were to 1) determine the transmission of STEC or enteric pathogens from small and large animal herds or operations to fresh produce on sustainable farms in TN and NC, 2) identify the possible sources that impact transmission of AMR E. coli, specifically STEC on these systems, and 3) WGS to characterize recovered E. coli from these sources. Samples were collected from raw and composted manure, environment, and produce sources. The serotype, virulence, and genotypic resistance profile were determined using the assembled genome sequences sequenced by Illumina technology. Broth microdilution was used to determine the antimicrobial susceptibility of each isolate against a panel of fourteen antimicrobials. The prevalence of E. coli increased during the summer season for all sources tested. ParSNP trees generated demonstrated that the transmission of AMR E. coli is occurring between animal feeding operations and fresh produce. Ten isolates were identified as serotype O45, a serotype that is associated with the "Big Six" group that is frequently linked with foodborne outbreaks caused by non-O157 E. coli. However, these isolates did not possess the stx gene. The highest frequency of resistance was detected against streptomycin (n = 225), ampicillin (n = 190) and sulfisoxazole FIS (n = 140). A total of 35 (13.7%) isolates from two TN farms were positive for the blaCMY (n = 5) and blaTEM (n = 32) genes. The results of this study show the potential of AMR E. coli transmission between animal feeding operations and fresh produce, and more studies are recommended to study this interaction and prevent dissemination in sustainable farming systems.


Subject(s)
Enterotoxigenic Escherichia coli/genetics , Escherichia coli Infections/transmission , Foodborne Diseases/microbiology , Manure/microbiology , Vegetables/microbiology , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Enterotoxigenic Escherichia coli/drug effects , Enterotoxigenic Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Farms , Genome, Bacterial/genetics , Microbial Sensitivity Tests , Serogroup , Streptomycin/pharmacology , Sulfisoxazole/pharmacology
14.
Avian Pathol ; 48(sup1): S52-S59, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31267762

ABSTRACT

The poultry red mite (PRM), Dermanyssus gallinae (De Geer, 1778), is a worldwide distributed ectoparasite and considered a major pest affecting the laying hen industry in Europe. Based on available information in other ectoparasites, the mite microbiome might participate in several biological processes and the acquisition, maintenance and transmission of pathogens. However, little is known about the role of PRM as a mechanical carrier or a biological vector in the transmission of pathogenic bacteria. Herein, we used a metaproteomics approach to characterize the alphaproteobacteria in the microbiota of PRM, and variations in its profile with ectoparasite development (nymphs vs. adults) and feeding (unfed vs. fed). The results showed that the bacterial community associated with D. gallinae was mainly composed of environmental and commensal bacteria. Putative symbiotic bacteria of the genera Wolbachia, C. Tokpelaia and Sphingomonas were identified, together with potential pathogenic bacteria of the genera Inquilinus, Neorickettsia and Roseomonas. Significant differences in the composition of alphaproteobacterial microbiota were associated with mite development and feeding, suggesting that bacteria have functional implications in metabolic pathways associated with blood feeding. These results support the use of metaproteomics for the characterization of alphaproteobacteria associated with the D. gallinae microbiota that could provide relevant information for the understanding of mite-host interactions and the development of potential control interventions. Research highlights Metaproteomics is a valid approach for microbiome characterization in ectoparasites. Alphaproteobacteria putative bacterial symbionts were identified in D. gallinae. Mite development and feeding were related to variations in bacterial community. Potentially pathogenic bacteria were identified in mite microbiota.


Subject(s)
Alphaproteobacteria/isolation & purification , Chickens/parasitology , Microbiota , Mites/microbiology , Poultry Diseases/parasitology , Animals , Female , Proteomics
15.
Trends Parasitol ; 35(9): 725-737, 2019 09.
Article in English | MEDLINE | ID: mdl-31331734

ABSTRACT

Recently, our knowledge of the composition and complexity of tick microbial communities has increased and supports microbial impact on tick biology. Results support a phylogenetic association between ticks and their microbiota across evolution; this is known as phylosymbiosis. Herein, using published datasets, we confirm the existence of phylosymbiosis between Ixodes ticks and their microbial communities. The strong phylosymbiotic signal and the phylogenetic structure of microbial communities associated with Ixodid ticks revealed that phylosymbiosis may be a widespread phenomenon in tick-microbiota evolution. This finding supports the existence of a species-specific tick hologenome with a largely unexplored influence on tick biology and pathogen transmission. These results may provide potential targets for the construction of paratransgenic ticks to control tick infestations and tick-borne diseases.


Subject(s)
Biological Evolution , Genome/genetics , Ticks/genetics , Ticks/microbiology , Animals , Host Microbial Interactions/physiology , Microbiota/physiology , Symbiosis , Ticks/classification
16.
PLoS One ; 14(5): e0216080, 2019.
Article in English | MEDLINE | ID: mdl-31063485

ABSTRACT

Much work has been dedicated to identifying members of the microbial gut community that have potential to augment the growth rate of agricultural animals including chickens. Here, we assessed any correlations between the fecal microbiome, a proxy for the gut microbiome, and feed efficiency or weight gain at the pedigree chicken level, the highest tier of the production process. Because selective breeding is conducted at the pedigree level, our aim was to determine if microbiome profiles could be used to predict feed conversion or weight gain in order to improve selective breeding. Using 16s rRNA amplicon sequencing, we profiled the microbiomes of high and low weight gain (WG) birds and good and poor feed efficient (FE) birds in two pedigree lineages of broiler chickens. We also aimed to understand the dynamics of the microbiome with respect to maturation. A time series experiment was conducted, where fecal samples of chickens were collected at 6 points of the rearing process and the microbiome of these samples profiled. We identified OTUs differences at different taxonomic levels in the fecal community between high and low performing birds within each genetic line, indicating a specificity of the microbial community profiles correlated to performance factors. Using machine-learning methods, we built a classification model that could predict feed conversion performance from the fecal microbial community. With respect to maturation, we found that the fecal microbiome is dynamic in early life but stabilizes after 3 weeks of age independent of lineage. Our results indicate that the fecal microbiome profile can be used to predict feed conversion, but not weight gain in these pedigree lines. From the time series experiments, it appears that these predictions can be evaluated as early as 20 days of age. Our data also indicates that there is a genetic factor for the microbiome profile.


Subject(s)
Chickens/microbiology , Feces/microbiology , Microbiota/genetics , Selective Breeding/genetics , Animal Feed , Animals , Biomarkers , Pedigree , RNA, Ribosomal, 16S/genetics , Weight Gain/physiology
17.
Ticks Tick Borne Dis ; 10(2): 336-343, 2019 02.
Article in English | MEDLINE | ID: mdl-30482513

ABSTRACT

Exploring the microbial diversity of ticks is crucial to understand geographical dispersion and pathogen transmission. Tick microbes participate in many biological processes implicated in the acquisition, maintenance, and transmission of pathogens, and actively promote host phenotypic changes, and adaptation to new environments. The microbial community of Ixodes ventalloi still remains unexplored. In this study, the bacterial microbiota of wild-caught I. ventalloi was characterized using shotgun-metagenomic sequencing in samples from unfed adults collected during December 2013-January 2014 in two locations from Sicily, Italy. The microbiota identified in I. ventalloi was mainly composed of symbiotic, commensal, and environmental bacteria. Interestingly, we identified the genera Anaplasma and Borrelia as members of the microbiota of I. ventalloi. These results advance our information on I. ventalloi microbiota composition, with potential implications in tick-host adaptation, geographic expansion, and vector competence.


Subject(s)
Ixodes/microbiology , Microbiota , Anaplasma/genetics , Animals , Borrelia/genetics , DNA, Bacterial/genetics , Female , High-Throughput Nucleotide Sequencing , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sicily , Symbiosis
18.
Ticks Tick Borne Dis ; 9(5): 1241-1251, 2018 07.
Article in English | MEDLINE | ID: mdl-29753651

ABSTRACT

An innovative metaomics approach integrating metatranscriptomics and metaproteomics was used to characterize bacterial communities in the microbiota of the Lyme borreliosis spirochete vector, Ixodes ricinus (Acari: Ixodidae). Whole internal tissues and salivary glands from unfed larvae and female ticks, respectively were used. Reused I. ricinus RNA-sequencing data for metranscriptomics analysis together with metaproteomics provided a better characterization of tick bacterial microbiota by increasing bacteria identification and support for identified bacteria with putative functional implications. The results showed the presence of symbiotic, commensal, soil, environmental, and pathogenic bacteria in the I. ricinus microbiota, including previously unrecognized commensal and soil microorganisms. The results of the metaomics approach may have implications in the characterization of putative mechanisms by which pathogen infection manipulates tick microbiota to facilitate infection. Metaomics approaches integrating different omics datasets would provide a better description of tick microbiota compositions, and insights into tick interactions with microbiota, pathogens and hosts.


Subject(s)
Arachnid Vectors/microbiology , Gene Expression Profiling/methods , Ixodes/microbiology , Larva/microbiology , Microbiota/genetics , Proteomics/methods , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Biofilms , Female , Lyme Disease/microbiology , Salivary Glands/microbiology , Sequence Analysis, RNA
19.
Genome Announc ; 6(5)2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29437094

ABSTRACT

Here, we report the draft genome sequences of isolates of Anaplasma phagocytophilum, Anaplasma marginale, and Anaplasma ovis The genomes of A. phagocytophilum (human), A. marginale (cattle), and A. ovis (goat) isolates from the United States were sequenced and characterized. This is the first report of an A. ovis genome sequence.

20.
Microbiome ; 3: 51, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26552373

ABSTRACT

Due to the significance of the microbiome on human health, much of the current data available regarding microbiome functionality is centered on human medicine. For agriculturally important taxa, the functionality of gastrointestinal bacteria has been studied with the primary goals of improving animal health and production performance. With respect to cattle, the digestive functions of bacteria in cattle are unarguably critical to digestion and positively impact production performance. Conversely, some research suggests that the gastrointestinal microbiome in chickens competes with the host for nutrients and produces toxins that can harm the host resulting in decreased growth efficiency. Concerning many other species including reptiles and cetaceans, some cataloging of fecal bacteria has been conducted, but the functionality within the host remains ambiguous. These taxa could provide interesting gastrointestinal insight into functionality and symbiosis considering the extreme feeding regimes (snakes), highly specialized diets (vampire bats), and living environments (polar bears), which warrants further exploration.


Subject(s)
Gastrointestinal Microbiome , Adaptation, Biological , Animals , Bacteria , Environment , Humans , Metagenome
SELECTION OF CITATIONS
SEARCH DETAIL
...