Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1340, 2023.
Article in English | MEDLINE | ID: mdl-37346545

ABSTRACT

Recognizing transcription start sites is key to gene identification. Several approaches have been employed in related problems such as detecting translation initiation sites or promoters, many of the most recent ones based on machine learning. Deep learning methods have been proven to be exceptionally effective for this task, but their use in transcription start site identification has not yet been explored in depth. Also, the very few existing works do not compare their methods to support vector machines (SVMs), the most established technique in this area of study, nor provide the curated dataset used in the study. The reduced amount of published papers in this specific problem could be explained by this lack of datasets. Given that both support vector machines and deep neural networks have been applied in related problems with remarkable results, we compared their performance in transcription start site predictions, concluding that SVMs are computationally much slower, and deep learning methods, specially long short-term memory neural networks (LSTMs), are best suited to work with sequences than SVMs. For such a purpose, we used the reference human genome GRCh38. Additionally, we studied two different aspects related to data processing: the proper way to generate training examples and the imbalanced nature of the data. Furthermore, the generalization performance of the models studied was also tested using the mouse genome, where the LSTM neural network stood out from the rest of the algorithms. To sum up, this article provides an analysis of the best architecture choices in transcription start site identification, as well as a method to generate transcription start site datasets including negative instances on any species available in Ensembl. We found that deep learning methods are better suited than SVMs to solve this problem, being more efficient and better adapted to long sequences and large amounts of data. We also create a transcription start site (TSS) dataset large enough to be used in deep learning experiments.

2.
Front Psychol ; 8: 745, 2017.
Article in English | MEDLINE | ID: mdl-28559866

ABSTRACT

Learning Management System (LMS) platforms provide a wealth of information on the learning patterns of students. Learning Analytics (LA) techniques permit the analysis of the logs or records of the activities of both students and teachers on the on-line platform. The learning patterns differ depending on the type of Blended Learning (B-Learning). In this study, we analyse: (1) whether significant differences exist between the learning outcomes of students and their learning patterns on the platform, depending on the type of B-Learning [Replacement blend (RB) vs. Supplemental blend (SB)]; (2) whether a relation exists between the metacognitive and the motivational strategies (MS) of students, their learning outcomes and their learning patterns on the platform. The 87,065 log records of 129 students (69 in RB and 60 in SB) in the Moodle 3.1 platform were analyzed. The results revealed different learning patterns between students depending on the type of B-Learning (RB vs. SB). We have found that the degree of blend, RB vs. SB, seems to condition student behavior on the platform. Learning patterns in RB environments can predict student learning outcomes. Additionally, in RB environments there is a relationship between the learning patterns and the metacognitive and (MS) of the students.

SELECTION OF CITATIONS
SEARCH DETAIL
...