Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 16(9): 1420-1424, 2021 05 06.
Article in English | MEDLINE | ID: mdl-33275320

ABSTRACT

Aberrant WNT pathway activation, leading to nuclear accumulation of ß-catenin, is a key oncogenic driver event. Mutations in the tumor suppressor gene APC lead to impaired proteasomal degradation of ß-catenin and subsequent nuclear translocation. Restoring cellular degradation of ß-catenin represents a potential therapeutic strategy. Here, we report the fragment-based discovery of a small molecule binder to ß-catenin, including the structural elucidation of the binding mode by X-ray crystallography. The difficulty in drugging ß-catenin was confirmed as the primary screening campaigns identified only few and very weak hits. Iterative virtual and NMR screening techniques were required to discover a compound with sufficient potency to be able to obtain an X-ray co-crystal structure. The binding site is located between armadillo repeats two and three, adjacent to the BCL9 and TCF4 binding sites. Genetic studies show that it is unlikely to be useful for the development of protein-protein interaction inhibitors but structural information and established assays provide a solid basis for a prospective optimization towards ß-catenin proteolysis targeting chimeras (PROTACs) as alternative modality.


Subject(s)
Small Molecule Libraries/chemistry , beta Catenin/antagonists & inhibitors , Binding Sites , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Protein Interaction Maps/drug effects , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , beta Catenin/metabolism
2.
Future Med Chem ; 12(21): 1911-1923, 2020 11.
Article in English | MEDLINE | ID: mdl-32779487

ABSTRACT

Activating mutations in the three human RAS genes, KRAS, NRAS and HRAS, are among the most common oncogenic drivers in human cancers. Covalent KRASG12C inhibitors, which bind to the switch II pocket in the 'off state' of KRAS, represent the first direct KRAS drugs that entered human clinical trials. However, the remaining 85% of non-KRASG12C-driven cancers remain undrugged as do NRAS and HRAS and no drugs targeting the 'on state' have been discovered so far. The switch I/II pocket is a second pocket for which the nanomolar inhibitor BI-2852 has been discovered. Here, we elucidate inhibitor binding modes in KRAS, NRAS and HRAS on and off and discuss future strategies to drug all RAS isoforms with this one pocket.


Subject(s)
Enzyme Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Neoplasms/drug therapy , ras Proteins/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Neoplasms/enzymology , ras Proteins/genetics , ras Proteins/metabolism
3.
J Med Chem ; 62(22): 10272-10293, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31689114

ABSTRACT

The epidermal growth factor receptor (EGFR), when carrying an activating mutation like del19 or L858R, acts as an oncogenic driver in a subset of lung tumors. While tumor responses to tyrosine kinase inhibitors (TKIs) are accompanied by marked tumor shrinkage, the response is usually not durable. Most patients relapse within two years of therapy often due to acquisition of an additional mutation in EGFR kinase domain that confers resistance to TKIs. Crucially, oncogenic EGFR harboring both resistance mutations, T790M and C797S, can no longer be inhibited by currently approved EGFR TKIs. Here, we describe the discovery of BI-4020, which is a noncovalent, wild-type EGFR sparing, macrocyclic TKI. BI-4020 potently inhibits the above-described EGFR variants and induces tumor regressions in a cross-resistant EGFRdel19 T790M C797S xenograft model. Key was the identification of a highly selective but moderately potent benzimidazole followed by complete rigidification of the molecule through macrocyclization.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Crystallography, X-Ray , Cyclization , Entropy , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/genetics , Female , Hepatocytes , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mice, Transgenic , Mutation , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...