Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(36): 13725-13733, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36004443

ABSTRACT

The metal organic framework structure ZIF-8 has been grown directly on vertically aligned carbon nano tubes (VACNT) by a solid vapour transformation of a ZnO@VACNT composite with gaseous 2-methylimidazole. The ZnO@VACNT composite was synthesised by atomic layer deposition (ALD) using diethylzinc and water as precursors resulting in a homogeneous distribution of crystalline ZnO particles with an average size of 13 nm within the 3D VACNT host structure. The ZnO@VACNT composite was transformed to ZIF-8 by reaction with 2-methyl-imidazole (Hmim) while maintaining the 3D VACNT structure employing a solid vapour transformation reaction. Reaction time and temperature were identified as key parameters to control the generated surface area and the degree of conversion of the nanoscaled ZnO particles. 80 °C and 72 h were found to be sufficient for a complete conversion while longer reaction times result in even higher surface areas of the formed ZIF-8@VACNT composite. Surface areas of up to 1569 m2 g-1 could be achieved. Temperatures below 80 °C led to an incomplete conversion even under longer reaction times of up to 6 weeks. Finally, the CO2 adsorption properties of the ZIF-8@VACNT composite were evaluated. A composite with a 27 w% content of CNTs and a surface area of 1277 m2 g-1 shows an adsorption of 6.05 mmol g-1 CO2 at 30 bar. From the comparison with the pristine materials ZIF-8 and VACNT alone the observed overall CO2 adsorption behaviour of the composite is a combination of the behaviour of the individual components, ZIF-8 and VACNTs. Namely the typical steep rise of the ZIF-8 in the low-pressure regime with a nearly linear steady progression in the medium pressure size regime, the latter typical for VACNTs, proves that the combination of both components leads to enhanced adsorption properties of the ZIF-8@VACNT composite compared to the sole components ZIF-8 and VACNTs.

2.
Dalton Trans ; 46(16): 5189-5201, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28374025

ABSTRACT

ZnS nanoparticles have been synthesized on vertically aligned carbon nanotubes by gas-phase conversion of ZnO nanoparticles which have been tethered on vertically aligned carbon nanotubes using atomic layer deposition (ALD). The resulting ZnO@CNT nanocomposite has been converted to ZnS@CNT by reacting it with hydrogen sulfide using thioacetamide as a precursor. The composition of the resulting nanocomposite could be tuned from a mixed ternary ZnS/ZnO@CNT nanocomposite to a pure ZnS@CNT nanocomposite. At the same time, the amount of wurtzite and sphalerite phases varies in the ZnS@CNT nanocomposite. The resulting nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED), ultraviolet-visible diffuse reflectance spectroscopy (UV-VIS DRS) and photoluminescence spectroscopy (PL). Finally, the different nanocomposites were tested for their photocatalytic activity by the photocatalytic decomposition under visible light using methyl orange (MO). Herein a systematic study of the photocatalytic activity of different compositions of ZnS in the ZnS@CNT nanocomposite was performed for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...