Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36361762

ABSTRACT

Polyamines are essential biogenic poly-cations with important roles in many cellular processes and diseases such as cancer. A rate-limiting step early in the biosynthesis of polyamines is the conversion of ornithine to putrescine by the homodimeric enzyme ornithine decarboxylase (ODC). In a conserved mechanism of posttranslational regulation, ODC antizyme (OAZ) binds to ODC monomers promoting their ubiquitin-independent degradation by the proteasome. Decoding of OAZ mRNA is unusual in that it involves polyamine-regulated bypassing of an internal translation termination (STOP) codon by a ribosomal frameshift (RFS) event. Using Saccharomyces cerevisiae, we earlier showed that high polyamine concentrations lead to increased efficiency of OAZ1 mRNA translation by binding to nascent Oaz1 polypeptide. The binding of polyamines prevents stalling of the ribosomes on OAZ1 mRNA caused by nascent Oaz1 polypeptide thereby promoting synthesis of full-length Oaz1. Polyamine depletion, however, also inhibits RFS during the decoding of constructs bearing the OAZ1 shift site lacking sequences encoding the Oaz1 parts implicated in polyamine binding. Polyamine depletion is known to impair hypusine modification of translation factor eIF5A. Using a novel set of conditional mutants impaired in the function of eIF5A/Hyp2 or its hypusination, we show here that hypusinated eIF5A is required for efficient translation across the OAZ1 RFS site. These findings identify eIF5A as a part of Oaz1 regulation, and thereby of polyamine synthesis. Additional experiments with DFMO, however, show that depletion of polyamines inhibits translation across the OAZ1 RFS site not only by reducing Hyp2 hypusination, but in addition, and even earlier, by affecting RFS more directly.


Subject(s)
Frameshifting, Ribosomal , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase/metabolism , Polyamines/metabolism
2.
Methods Enzymol ; 618: 187-210, 2019.
Article in English | MEDLINE | ID: mdl-30850052

ABSTRACT

Covalent modification of proteins with the small ubiquitin-related modifier (SUMO) is found in all eukaryotes and is involved in many important processes. SUMO attachment may change interaction properties, subcellular localization, or stability of a modified protein. Usually, only a small fraction of a protein is modified at a given time because sumoylation is a highly dynamic process. The sumoylated state of a protein is controlled by the activity of the sumoylation enzymes that promote either their mono- or poly-sumoylation (SUMO chain formation), by SUMO proteases that reverse these modifications, and by SUMO-targeted ubiquitin ligases (STUbL, ULS) that mediate their degradation by the proteasome. While some organisms, such as humans, express multiple isoforms, budding yeast SUMO is encoded by a single and essential gene termed SMT3. The analysis of the simpler SUMO system in budding yeast has been instrumental in the identification of enzymes acting on this modification and controlling its dynamics. Sumoylation of proteins changes dramatically during the cell division cycle and under various stress conditions. Here we summarize various approaches that employ Saccharomyces cerevisiae as a model system to study the dynamics of sumoylation and how it is controlled.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Blotting, Western/methods , Electrophoresis, Polyacrylamide Gel/methods , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Sumoylation , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...