Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 2(11): 1316-1331, 2020 11.
Article in English | MEDLINE | ID: mdl-33139960

ABSTRACT

Current clinical trials are testing the life-extending benefits of the diabetes drug metformin in healthy individuals without diabetes. However, the metabolic response of a non-diabetic cohort to metformin treatment has not been studied. Here, we show in C. elegans and human primary cells that metformin shortens lifespan when provided in late life, contrary to its positive effects in young organisms. We find that metformin exacerbates ageing-associated mitochondrial dysfunction, causing respiratory failure. Age-related failure to induce glycolysis and activate the dietary-restriction-like mobilization of lipid reserves in response to metformin result in lethal ATP exhaustion in metformin-treated aged worms and late-passage human cells, which can be rescued by ectopic stabilization of cellular ATP content. Metformin toxicity is alleviated in worms harbouring disruptions in insulin-receptor signalling, which show enhanced resilience to mitochondrial distortions at old age. Together, our data show that metformin induces deleterious changes of conserved metabolic pathways in late life, which could bring into question its benefits for older individuals without diabetes.


Subject(s)
Aging , Caenorhabditis elegans , Hypoglycemic Agents/toxicity , Metabolism/drug effects , Metformin/toxicity , Adenosine Triphosphate/metabolism , Animals , Caloric Restriction , Glycolysis , Humans , Life Expectancy , Lipid Metabolism , Microbiota , Mitochondrial Diseases/metabolism , Primary Cell Culture , Receptor, Insulin/metabolism , Signal Transduction
2.
J Innate Immun ; 10(2): 94-105, 2018.
Article in English | MEDLINE | ID: mdl-29237166

ABSTRACT

The human plasma contact system is an immune surveillance system activated by the negatively charged surfaces of bacteria and fungi and includes the kallikrein-kinin, the coagulation, and the fibrinolytic systems. Previous work shows that the contact system also activates complement, and that plasma enzymes like kallikrein, plasmin, thrombin, and FXII are involved in the activation process. Here, we show for the first time that kallikrein cleaves the central complement component C3 directly to yield active components C3b and C3a. The cleavage site within C3 is identical to that recognized by the C3 convertase. Also, kallikrein-generated C3b forms C3 convertases, which trigger the C3 amplification loop. Since kallikrein also cleaves factor B to yield Bb and Ba, kallikrein alone can trigger complement activation. Kallikrein-generated C3 convertases are inhibited by factor H; thus, the kallikrein activation pathway merges with the amplification loop of the alternative pathway. Taken together, these data suggest that activation of the contact system locally enhances complement activation on cell surfaces. The human pathogenic microbe Candida albicans activates the contact system in normal human serum. However, C. albicans immediately recruits factor H to the surface, thereby evading the alternative and likely kallikrein-mediated complement pathways.


Subject(s)
Complement Activation , Complement C3-C5 Convertases/metabolism , Complement C3/metabolism , Kallikreins/metabolism , Amino Acid Sequence , Animals , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Cell Line, Transformed , Complement C3b/chemistry , Complement C3b/metabolism , Complement Factor B/metabolism , Complement Factor D/metabolism , Complement Factor H/pharmacology , Complement Pathway, Alternative , Factor XII/metabolism , Female , Humans , Immune Evasion , Mice, Inbred BALB C , Protein Binding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...