Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
2.
Nat Rev Cardiol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664575

ABSTRACT

Atherosclerosis is the primary underlying cause of myocardial infarction and stroke. Atherosclerotic cardiovascular disease is characterized by a chronic inflammatory reaction in medium-to-large-sized arteries, with its onset and perpetuation driven by leukocytes infiltrating the subendothelial space. Activation of endothelial cells triggered by hyperlipidaemia and lipoprotein retention in the arterial intima initiates the accumulation of pro-inflammatory leukocytes in the arterial wall, fostering the progression of atherosclerosis. This inflammatory response is coordinated by an array of soluble mediators, namely cytokines and chemokines, that amplify inflammation both locally and systemically and are complemented by tissue-specific molecules that regulate the homing, adhesion and transmigration of leukocytes. Despite abundant evidence from mouse models, only a few therapies targeting leukocytes in atherosclerosis have been assessed in humans. The major challenges for the clinical translation of these therapies include the lack of tissue specificity and insufficient selectivity of inhibition strategies. In this Review, we discuss the latest research on receptor-ligand pairs and interactors that regulate leukocyte influx into the inflamed artery wall, primarily focusing on studies that used pharmacological interventions. We also discuss mechanisms that promote the resolution of inflammation and highlight how major findings from these research areas hold promise as potential therapeutic strategies for atherosclerotic cardiovascular disease.

3.
NPJ Genom Med ; 9(1): 8, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326393

ABSTRACT

Whole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we propose a cost-effective method which we call "Whole Exome Genome Sequencing" (WEGS), that combines low-depth WGS and high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed). We experimentally assess the performance of WEGS with four different depth of coverage and sample multiplexing configurations. We show that the optimal WEGS configurations are 1.7-2.0 times cheaper than standard WES (no-plexing), 1.8-2.1 times cheaper than high-depth WGS, reach similar recall and precision rates in detecting coding variants as WES, and capture more population-specific variants in the rest of the genome that are difficult to recover when using genotype imputation methods. We apply WEGS to 862 patients with peripheral artery disease and show that it directly assesses more known disease-associated variants than a typical genotyping array and thousands of non-imputable variants per disease-associated locus.

4.
Front Cardiovasc Med ; 10: 1293032, 2023.
Article in English | MEDLINE | ID: mdl-38028448

ABSTRACT

Background: The Langendorff-perfused ex-vivo isolated heart model has been extensively used to study cardiac function for many years. However, electrical and mechanical function are often studied separately-despite growing proof of a complex electro-mechanical interaction in cardiac physiology and pathology. Therefore, we developed an isolated mouse heart perfusion system that allows simultaneous recording of electrical and mechanical function. Methods: Isolated mouse hearts were mounted on a Langendorff setup and electrical function was assessed via a pseudo-ECG and an octapolar catheter inserted in the right atrium and ventricle. Mechanical function was simultaneously assessed via a balloon inserted into the left ventricle coupled with pressure determination. Hearts were then submitted to an ischemia-reperfusion protocol. Results: At baseline, heart rate, PR and QT intervals, intra-atrial and intra-ventricular conduction times, as well as ventricular effective refractory period, could be measured as parameters of cardiac electrical function. Left ventricular developed pressure (DP), left ventricular work (DP-heart rate product) and maximal velocities of contraction and relaxation were used to assess cardiac mechanical function. Cardiac arrhythmias were observed with episodes of bigeminy during which DP was significantly increased compared to that of sinus rhythm episodes. In addition, the extrasystole-triggered contraction was only 50% of that of sinus rhythm, recapitulating the "pulse deficit" phenomenon observed in bigeminy patients. After ischemia, the mechanical function significantly decreased and slowly recovered during reperfusion while most of the electrical parameters remained unchanged. Finally, the same electro-mechanical interaction during episodes of bigeminy at baseline was observed during reperfusion. Conclusion: Our modified Langendorff setup allows simultaneous recording of electrical and mechanical function on a beat-to-beat scale and can be used to study electro-mechanical interaction in isolated mouse hearts.

5.
Sci Transl Med ; 15(720): eadf3357, 2023 11.
Article in English | MEDLINE | ID: mdl-37910599

ABSTRACT

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.


Subject(s)
Atherosclerosis , MicroRNAs , Plaque, Atherosclerotic , Humans , Animals , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Endothelial Cells/metabolism , Receptors, CXCR4/metabolism , Atherosclerosis/genetics , Plaque, Atherosclerotic/pathology , Cell Proliferation , Myocytes, Smooth Muscle/metabolism , Cell Movement
7.
Cardiovasc Diabetol ; 22(1): 217, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37592302

ABSTRACT

BACKGROUND: Agonism at the receptor for the glucose-dependent insulinotropic polypeptide (GIPR) is a key component of the novel unimolecular GIPR:GLP-1R co-agonists, which are among the most promising drugs in clinical development for the treatment of obesity and type 2 diabetes. The therapeutic effect of chronic GIPR agonism to treat dyslipidemia and thus to reduce the cardiovascular disease risk independently of body weight loss has not been explored yet. METHODS: After 8 weeks on western diet, LDL receptor knockout (LDLR-/-) male mice were treated with daily subcutaneous injections of long-acting acylated GIP analog (acyl-GIP; 10nmol/kg body weight) for 28 days. Body weight, food intake, whole-body composition were monitored throughout the study. Fasting blood glucose and intraperitoneal glucose tolerance test (ipGTT) were determined on day 21 of the study. Circulating lipid levels, lipoprotein profiles and atherosclerotic lesion size was assessed at the end of the study. Acyl-GIP effects on fat depots were determined by histology and transcriptomics. RESULTS: Herein we found that treatment with acyl-GIP reduced dyslipidemia and atherogenesis in male LDLR-/- mice. Acyl-GIP administration resulted in smaller adipocytes within the inguinal fat depot and RNAseq analysis of the latter revealed that acyl-GIP may improve dyslipidemia by directly modulating lipid metabolism in this fat depot. CONCLUSIONS: This study identified an unanticipated efficacy of chronic GIPR agonism to improve dyslipidemia and cardiovascular disease independently of body weight loss, indicating that treatment with acyl-GIP may be a novel approach to alleviate cardiometabolic disease.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Male , Animals , Mice , Diabetes Mellitus, Type 2/drug therapy , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Dyslipidemias/drug therapy , Body Weight , Weight Loss
8.
Front Cardiovasc Med ; 10: 1004003, 2023.
Article in English | MEDLINE | ID: mdl-37441701

ABSTRACT

Objective: Atherosclerosis expression varies across not only coronary, cerebrovascular, and peripheral arteries but also within the peripheral vascular tree. The underlying pathomechanisms of distinct atherosclerosis phenotypes in lower extremity peripheral artery disease (PAD) is poorly understood. We investigated the association of cardiovascular risk factors (CVRFs) and atherosclerosis distribution in a targeted approach analyzing symptomatic patients with isolated anatomic phenotypes of PAD. Methods: In a cross-sectional analysis of consecutive patients undergoing first-time endovascular recanalization for symptomatic PAD, data of patients with isolated anatomic phenotypes of either proximal (iliac) or distal (infrageniculate) atherosclerosis segregation were extracted. We performed a multivariable logistic regression model with backward elimination to investigate the association of proximal and distal PAD with CVRFs. Results: Of the 637 patients (29% females) with endovascular recanalization, 351 (55%) had proximal and 286 (45%) had distal atherosclerosis. Female sex [odds ratio (OR) 0.33, 95% confidence interval (CI) 0.20-0.54, p = 0.01], active smoking (OR 0.16, 95% CI 0.09-0.28, p < 0.001), and former smoking (OR 0.33, 95% CI 0.20-0.57, p < 0.001) were associated with proximal disease. Diabetes mellitus (DM) (OR 3.25, 95% CI 1.93-5.46, p < 0.001), chronic kidney disease (CKD) (OR 1.18, 95% CI 1.08-1.28, p < 0.001), and older age (OR 1.31, 95% CI 1.06-1.61, p = 0.01) were associated with distal disease. Conclusion: Female sex, particularly in the context of smoking, is associated with clinically relevant, proximal atherosclerosis expression. Our additional findings that distal atherosclerosis expression is associated with DM, CKD, and older age suggest that PAD has at least two distinct atherosclerotic phenotypes with sex-specific and individual susceptibility to atherogenic risk factors.

9.
Circ Res ; 132(8): 933-949, 2023 04 14.
Article in English | MEDLINE | ID: mdl-37053273

ABSTRACT

Arterial and venous thrombosis constitute a major source of morbidity and mortality worldwide. Association between thrombotic complications and cardiovascular and other chronic inflammatory diseases are well described. Inflammation and subsequent initiation of thrombotic events, termed immunothrombosis, also receive growing attention but are still incompletely understood. Nevertheless, the clinical relevance of aberrant immunothrombosis, referred to as thromboinflammation, is evident by an increased risk of thrombosis and cardiovascular events in patients with inflammatory or infectious diseases. Proinflammatory mediators released from platelets, complement activation, and the formation of NETs (neutrophil extracellular traps) initiate and foster immunothrombosis. In this review, we highlight and discuss prominent and emerging interrelationships and functions between NETs and other mediators in immunothrombosis in cardiovascular disease. Also, with patients with chronic kidney disease suffering from increased cardiovascular and thrombotic risk, we summarize current knowledge on neutrophil phenotype, function, and NET formation in chronic kidney disease. In addition, we elaborate on therapeutic targeting of NETs-induced immunothrombosis. A better understanding of the functional relevance of antithrombotic mediators which do not increase bleeding risk may provide opportunities for successful therapeutic interventions to reduce thrombotic risk beyond current treatment options.


Subject(s)
Extracellular Traps , Renal Insufficiency, Chronic , Thrombosis , Humans , Extracellular Traps/physiology , Thrombosis/etiology , Inflammation/complications , Thromboinflammation , Neutrophils , Renal Insufficiency, Chronic/complications
10.
J Vasc Surg Venous Lymphat Disord ; 11(5): 1034-1044.e3, 2023 09.
Article in English | MEDLINE | ID: mdl-37030445

ABSTRACT

OBJECTIVE: In recent years, genotypic characterization of congenital vascular malformations (CVMs) has gained attention; however, the spectrum of clinical phenotype remains difficult to attribute to a genetic cause and is rarely described in the adult population. The aim of this study is to describe a consecutive series of adolescent and adult patients in a tertiary center, where a multimodal phenotypic approach was used for diagnosis. METHODS: We analyzed clinical findings, imaging, and laboratory results at initial presentation, and set a diagnosis according to the International Society for the Study of Vascular Anomalies (ISSVA) classification for all consecutively registered patients older than 14 years of age who were referred to the Center for Vascular Malformations at the University Hospital of Bern between 2008 and 2021. RESULTS: A total of 457 patients were included for analysis (mean age, 35 years; females, 56%). Simple CVMs were the most common (n = 361; 79%), followed by CVMs associated with other anomalies (n = 70; 15%), and combined CVMs (n = 26; 6%). Venous malformations (n = 238) were the most common CVMs overall (52%), and the most common simple CVMs (66%). Pain was the most frequently reported symptom in all patients (simple, combined, and vascular malformation with other anomalies). Pain intensity was more pronounced in simple venous and arteriovenous malformations. Clinical problems were related to the type of CVM diagnosed, with bleeding and skin ulceration in arteriovenous malformations, localized intravascular coagulopathy in venous malformations, and infectious complications in lymphatic malformations. Limb length difference occurred more often in patients with CVMs associated with other anomalies as compared with simple or combined CVM (22.9 vs 2.3%; P < .001). Soft tissue overgrowth was seen in one-quarter of all patients independent of the ISSVA group. CONCLUSIONS: In our adult and adolescent population with peripheral vascular malformations, simple venous malformations predominated, with pain as the most common clinical symptom. In one-quarter of cases, patients with vascular malformations presented with associated anomalies on tissue growth. The differentiation of clinical presentation with or without accompanying growth abnormalities need to be added to the ISSVA classification. Phenotypic characterization considering vascular and non-vascular features remains the cornerstone of diagnosis in adult as well as pediatric patients.


Subject(s)
Arteriovenous Malformations , Vascular Malformations , Female , Humans , Vascular Malformations/complications , Vascular Malformations/diagnostic imaging , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/genetics , Arteriovenous Malformations/therapy , Veins/abnormalities , Pain , Phenotype
11.
Eur J Clin Invest ; 53(1): e13885, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36219492

ABSTRACT

Atherosclerosis, a lipid-driven inflammatory disease, is the main underlying cause of cardiovascular diseases (CVDs) both in men and women. Sex-related dimorphisms regarding CVDs and atherosclerosis were observed since more than a decade ago. Inflammatory mediators such as cytokines, but also endothelial dysfunction, vascular smooth muscle cell migration and proliferation lead to vascular remodelling but are differentially affected by sex. Each year a greater number of men die of CVDs compared with women and are also affected by CVDs at an earlier age (40-70 years old) while women develop atherosclerosis-related complications mainly after menopause (60+ years). The exact biological reasons behind this discrepancy are still not well-understood. From the numerous animal studies on atherosclerosis, only a few include both sexes and even less investigate and highlight the sex-specific differences that may arise. Endogenous sex hormones such as testosterone and oestrogen modulate the atherosclerotic plaque composition and the frequency of such plaques. In men, testosterone seems to act like a double-edged sword as its decrease with ageing correlates with an increased risk of atherosclerotic CVDs, while testosterone is also reported to promote inflammatory immune cell recruitment into the atherosclerotic plaque. In premenopausal women, oestrogen exerts anti-atherosclerotic effects, which decline together with its level after menopause resulting in increased CVD risk in ageing women. However, the interplay of sex hormones, sex-specific immune responses and other sex-related factors is still incompletely understood. This review highlights reported sex differences in atherosclerotic vascular remodelling and the role of endogenous sex hormones in this process.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Animals , Female , Male , Vascular Remodeling , Testosterone , Gonadal Steroid Hormones , Estrogens
12.
Front Immunol ; 14: 1326440, 2023.
Article in English | MEDLINE | ID: mdl-38179045

ABSTRACT

Crosstalk between innate and adaptive immunity is pivotal for an efficient immune response and to maintain immune homeostasis under steady state conditions. As part of the innate immune system, type 2 innate lymphoid cells (ILC2s) have emerged as new important regulators of tissue homeostasis and repair by fine-tuning innate-adaptive immune cell crosstalk. ILC2s mediate either pro- or anti-inflammatory immune responses in a context dependent manner. Inflammation has proven to be a key driver of atherosclerosis, resembling the key underlying pathophysiology of cardiovascular disease (CVD). Notably, numerous studies point towards an atheroprotective role of ILC2s e.g., by mediating secretion of type-II cytokines (IL-5, IL-13, IL-9). Boosting these protective responses may be suitable for promising future therapy, although these protective cues are currently incompletely understood. Additionally, little is known about the mechanisms by which chemokine/chemokine receptor signaling shapes ILC2 functions in vascular inflammation and atherosclerosis. Hence, this review will focus on the latest findings regarding the protective and chemokine/chemokine receptor guided interplay between ILC2s and other immune cells like T and B cells, dendritic cells and macrophages in atherosclerosis. Further, we will elaborate on potential therapeutic implications which result or could be distilled from the dialogue of ILC2s with cells of the immune system in cardiovascular diseases.


Subject(s)
Atherosclerosis , Immunity, Innate , Humans , Lymphocytes , Inflammation , Receptors, Chemokine , Chemokines
14.
Basic Res Cardiol ; 117(1): 30, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35674847

ABSTRACT

Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Receptors, CXCR , Animals , Atherosclerosis/metabolism , Cell Adhesion , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Inflammation/metabolism , Mice , Mice, Knockout, ApoE , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Receptors, CXCR/metabolism , Transcription Factor RelA/metabolism
15.
Front Pharmacol ; 13: 908783, 2022.
Article in English | MEDLINE | ID: mdl-35712711

ABSTRACT

Objective: Regulatory T cells (Tregs) are critical immune modulators to maintain immune homeostasis and limit pulmonary hypertension (PH). This study was aimed to identify Treg-related genes (TRGs) in PH. Methods: The gene expression profile from lungs of PH patients was retrieved from the Gene Expression Omnibus (GEO) database. The abundance of Tregs was estimated by the xCell algorithm, the correlation of which with differentially expressed genes (DEGs) was performed. DEGs with a |Pearson correlation coefficient| >0.4 were identified as TRGs. Functional annotation and the protein-protein interaction (PPI) network were analyzed. A gene signature for 25 hub TRGs (TRGscore) was generated by a single sample scoring method to determine its accuracy to distinguish PH from control subjects. TRGs were validated in datasets of transcriptional profiling of PH cohorts and in lung tissues of experimental PH mice. Results: A total of 819 DEGs were identified in lungs of 58 PAH patients compared to that of 25 control subjects of dataset GSE117261. In total, 165 of all these DEGs were correlated with the abundance of Tregs and identified as TRGs, with 90 upregulated genes and 75 downregulated genes compared to that of control subjects. The upregulated TRGs were enriched in negative regulation of multiple pathways, such as cAMP-mediated signaling and I-kappaB kinase/NF-kappaB signaling, and regulated by multiple genes encoding transcriptional factors including HIF1A. Furthermore, 25 hub genes categorized into three clusters out of 165 TRGs were derived, and we identified 27 potential drugs targeting 10 hub TRGs. The TRGscore based on 25 hub TRGs was higher in PH patients and could distinguish PH from control subjects (all AUC >0.7). Among them, 10 genes including NCF2, MNDA/Ifi211, HCK, FGR, CSF3R, AQP9, S100A8, G6PD/G6pdx, PGD, and TXNRD1 were significantly reduced in lungs of severe PH patients of dataset GSE24988 as well as in lungs of hypoxic PH mice compared to corresponding controls. Conclusion: Our finding will shed some light on the Treg-associated therapeutic targets in the progression of PH and emphasize on TRGscore as a novel indicator for PH.

16.
Biomedicines ; 10(5)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35625720

ABSTRACT

Platelets are key regulators of haemostasis, making platelet dysfunction a major driver of thrombosis. Numerous processes that determine platelet function are influenced by microRNAs (miRs). MiR-26b is one of the highest-expressed miRs in healthy platelets, and its expression in platelets is changed in a diseased state. However, the exact effect of this miR on platelet function has not been studied yet. In this study, we made use of a whole-body knockout of miR-26b in ApoE-deficient mice in order to determine its impact on platelet function, thrombus formation and platelet signalling both ex vivo and in vivo. We show that a whole-body deficiency of miR-26b exacerbated platelet adhesion and aggregation ex vivo. Additionally, in vivo, platelets adhered faster, and larger thrombi were formed in mice lacking miR-26b. Moreover, isolated platelets from miR-26b-deficient mice showed a hyperactivated Src and EGFR signalling. Taken together, we show here for the first time that miR-26b attenuates platelet adhesion and aggregation, possibly through Src and EGFR signalling.

17.
Front Cardiovasc Med ; 9: 868934, 2022.
Article in English | MEDLINE | ID: mdl-35600479

ABSTRACT

Atherosclerotic vascular disease remains the most common cause of ischemia, myocardial infarction, and stroke. Vascular function is determined by structural and functional properties of the arterial vessel wall, which consists of three layers, namely the adventitia, media, and intima. Key cells in shaping the vascular wall architecture and warranting proper vessel function are vascular smooth muscle cells in the arterial media and endothelial cells lining the intima. Pathological alterations of this vessel wall architecture called vascular remodeling can lead to insufficient vascular function and subsequent ischemia and organ damage. One major pathomechanism driving this detrimental vascular remodeling is atherosclerosis, which is initiated by endothelial dysfunction allowing the accumulation of intimal lipids and leukocytes. Inflammatory mediators such as cytokines, chemokines, and modified lipids further drive vascular remodeling ultimately leading to thrombus formation and/or vessel occlusion which can cause major cardiovascular events. Although it is clear that vascular wall remodeling is an elementary mechanism of atherosclerotic vascular disease, the diverse underlying pathomechanisms and its consequences are still insufficiently understood.

18.
Front Cell Dev Biol ; 10: 824851, 2022.
Article in English | MEDLINE | ID: mdl-35242762

ABSTRACT

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as "Long-COVID-syndrome". Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.

19.
Blood ; 139(17): 2691-2705, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35313337

ABSTRACT

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Subject(s)
Blood Platelets , Thrombosis , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Blood Platelets/metabolism , Chemokine CXCL12/metabolism , Collagen/metabolism , Mice , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Thrombosis/metabolism
20.
Eur Heart J ; 43(6): 518-533, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34597388

ABSTRACT

AIMS: Atherosclerotic cardiovascular disease (ACVD) is a major cause of mortality and morbidity worldwide, and increased low-density lipoproteins (LDLs) play a critical role in development and progression of atherosclerosis. Here, we examined for the first time gut immunomodulatory effects of the microbiota-derived metabolite propionic acid (PA) on intestinal cholesterol metabolism. METHODS AND RESULTS: Using both human and animal model studies, we demonstrate that treatment with PA reduces blood total and LDL cholesterol levels. In apolipoprotein E-/- (Apoe-/-) mice fed a high-fat diet (HFD), PA reduced intestinal cholesterol absorption and aortic atherosclerotic lesion area. Further, PA increased regulatory T-cell numbers and interleukin (IL)-10 levels in the intestinal microenvironment, which in turn suppressed the expression of Niemann-Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 receptor signalling attenuated the PA-related reduction in total and LDL cholesterol and augmented atherosclerotic lesion severity in the HFD-fed Apoe-/- mice. To translate these preclinical findings to humans, we conducted a randomized, double-blinded, placebo-controlled human study (clinical trial no. NCT03590496). Oral supplementation with 500 mg of PA twice daily over the course of 8 weeks significantly reduced LDL [-15.9 mg/dL (-8.1%) vs. -1.6 mg/dL (-0.5%), P = 0.016], total [-19.6 mg/dL (-7.3%) vs. -5.3 mg/dL (-1.7%), P = 0.014] and non-high-density lipoprotein cholesterol levels [PA vs. placebo: -18.9 mg/dL (-9.1%) vs. -0.6 mg/dL (-0.5%), P = 0.002] in subjects with elevated baseline LDL cholesterol levels. CONCLUSION: Our findings reveal a novel immune-mediated pathway linking the gut microbiota-derived metabolite PA with intestinal Npc1l1 expression and cholesterol homeostasis. The results highlight the gut immune system as a potential therapeutic target to control dyslipidaemia that may introduce a new avenue for prevention of ACVDs.


Subject(s)
Atherosclerosis , Propionates , Animals , Apolipoproteins E/metabolism , Atherosclerosis/etiology , Cholesterol/metabolism , Cholesterol, LDL/metabolism , Humans , Intestinal Absorption , Mice , Mice, Inbred C57BL , Mice, Knockout , Propionates/pharmacology , Propionates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...