Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Res Protoc ; 12: e42529, 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37027187

ABSTRACT

BACKGROUND: On the national level, nutritional monitoring requires the assessment of reliable representative dietary intake data. To achieve this, standardized tools need to be developed, validated, and kept up-to-date with recent developments in food products and the nutritional behavior of the population. Recently, the human intestinal microbiome has been identified as an essential mediator between nutrition and host health. Despite growing interest in this connection, only a few associations between the microbiome, nutrition, and health have been clearly established. Available studies paint an inconsistent picture, partly due to a lack of standardization. OBJECTIVE: First, we aim to verify if food consumption, as well as energy and nutrient intake of the German population, can be recorded validly by means of the dietary recall software GloboDiet, which will be applied in the German National Nutrition Monitoring. Second, we aim to obtain high-quality data using standard methods on the microbiome, combined with dietary intake data and additional fecal sample material, and to also assess the functional activity of the microbiome by measuring microbial metabolites. METHODS: Healthy female and male participants aged between 18 and 79 years were recruited. Anthropometric measurements included body height and weight, BMI, and bioelectrical impedance analysis. For validation of the GloboDiet software, current food consumption was assessed with a 24-hour recall. Nitrogen and potassium concentrations were measured from 24-hour urine collections to enable comparison with the intake of protein and potassium estimated by the GloboDiet software. Physical activity was measured over at least 24 hours using a wearable accelerometer to validate the estimated energy intake. Stool samples were collected in duplicate for a single time point and used for DNA isolation and subsequent amplification and sequencing of the 16S rRNA gene to determine microbiome composition. For the identification of associations between nutrition and the microbiome, the habitual diet was determined using a food frequency questionnaire covering 30 days. RESULTS: In total, 117 participants met the inclusion criteria. The study population was equally distributed between the sexes and 3 age groups (18-39, 40-59, and 60-79 years). Stool samples accompanying habitual diet data (30-day food frequency questionnaire) are available for 106 participants. Current diet data and 24-hour urine samples for the validation of GloboDiet are available for 109 participants, of which 82 cases also include physical activity data. CONCLUSIONS: We completed the recruitment and sample collection of the ErNst study with a high degree of standardization. Samples and data will be used to validate the GloboDiet software for the German National Nutrition Monitoring and to compare microbiome composition and nutritional patterns. TRIAL REGISTRATION: German Register of Clinical Studies DRKS00015216; https://drks.de/search/de/trial/DRKS00015216. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/42529.

2.
Front Physiol ; 14: 1028643, 2023.
Article in English | MEDLINE | ID: mdl-36798943

ABSTRACT

Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body's adaptations to different endurance exercise protocols are not entirely understood. Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS). Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or <0. 6 ¯ (NMR, LC-MS) or >2.0 or <0.5 (GC×GC-MS), being classified as either exercise-responsive or intensity-dependent. Our findings indicate that CVE induced more profound alterations in the urinary metabolome than CME, especially at U01, returning to baseline within 24 h after U00. Most differences between exercise trials are likely to reflect higher energy requirements during CVE, as demonstrated by greater shifts in metabolites related to glycolysis (e.g., lactate, pyruvate), tricarboxylic acid cycle (e.g., cis-aconitate, malate), purine nucleotide breakdown (e.g., hypoxanthine), and amino acid mobilization (e.g., alanine) or degradation (e.g., 4-hydroxyphenylacetate). Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.

3.
Metabolites ; 10(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455749

ABSTRACT

Knowledge on metabolites distinguishing the metabolic response to acute physical exercise between fit and less fit individuals could clarify mechanisms and metabolic pathways contributing to the beneficial adaptations to exercise. By analyzing data from the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study, we characterized the acute effects of a standardized exercise tolerance test on urinary metabolites of 255 healthy women and men. In a second step, we aimed to detect a urinary metabolite pattern associated with the cardiorespiratory fitness (CRF), which was determined by measuring the peak oxygen uptake (VO2peak) during incremental exercise. Spot urine samples were collected pre- and post-exercise and 47 urinary metabolites were identified by nuclear magnetic resonance (NMR) spectroscopy. While the univariate analysis of pre-to-post-exercise differences revealed significant alterations in 37 urinary metabolites, principal component analysis (PCA) did not show a clear separation of the pre- and post-exercise urine samples. Moreover, both bivariate correlation and multiple linear regression analyses revealed only weak relationships between the VO2peak and single urinary metabolites or urinary metabolic pattern, when adjusting for covariates like age, sex, menopausal status, and lean body mass (LBM). Taken as a whole, our results show that several urinary metabolites (e.g., lactate, pyruvate, alanine, and acetate) reflect acute exercise-induced alterations in the human metabolism. However, as neither pre- and post-exercise levels nor the fold changes of urinary metabolites substantially accounted for the variation of the covariate-adjusted VO2peak, our results furthermore indicate that the urinary metabolites identified in this study do not allow to draw conclusions on the individual's physical fitness status. Studies investigating the relationship between the human metabolome and functional variables like the CRF should adjust for confounders like age, sex, menopausal status, and LBM.

4.
JMIR Res Protoc ; 5(3): e146, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27421387

ABSTRACT

BACKGROUND: The human metabolome is influenced by various intrinsic and extrinsic factors. A precondition to identify such biomarkers is the comprehensive understanding of the composition and variability of the metabolome of healthy humans. Sample handling aspects have an important impact on the composition of the metabolome; therefore, it is crucial for any metabolomics study to standardize protocols on sample collection, preanalytical sample handling, storage, and analytics to keep the nonbiological variability as low as possible. OBJECTIVE: The main objective of the KarMeN study is to analyze the human metabolome in blood and urine by targeted and untargeted metabolite profiling (gas chromatography-mass spectrometry [GC-MS], GC×GC-MS, liquid chromatography-mass spectrometry [LC-MS/MS], and(1)H nuclear magnetic resonance [NMR] spectroscopy) and to determine the impact of sex, age, body composition, diet, and physical activity on metabolite profiles of healthy women and men. Here, we report the outline of the study protocol with special regard to all aspects that should be considered in studies applying metabolomics. METHODS: Healthy men and women, aged 18 years or older, were recruited. In addition to a number of anthropometric (height, weight, body mass index, waist circumference, body composition), clinical (blood pressure, electrocardiogram, blood and urine clinical chemistry) and functional parameters (lung function, arterial stiffness), resting metabolic rate, physical activity, fitness, and dietary intake were assessed, and 24-hour urine, fasting spot urine, and plasma samples were collected. Standard operating procedures were established for all steps of the study design. Using different analytical techniques (LC-MS, GC×GC-MS,(1)H NMR spectroscopy), metabolite profiles of urine and plasma were determined. Data will be analyzed using univariate and multivariate as well as predictive modeling methods. RESULTS: The project was funded in 2011 and enrollment was carried out between March 2012 and July 2013. A total of 301 volunteers were eligible to participate in the study. Metabolite profiling of plasma and urine samples has been completed and data analysis is currently underway. CONCLUSIONS: We established the KarMeN study applying a broad set of clinical and physiological examinations with a high degree of standardization. Our experimental approach of combining scheduled timing of examinations and sampling with the multiplatform approach (GC×GC-MS, GC-MS, LC-MS/MS, and(1)H NMR spectroscopy) will enable us to differentiate between current and long-term effects of diet and physical activity on metabolite profiles, while enabling us at the same time to consider confounders such as age and sex in the KarMeN study. TRIAL REGISTRATION: German Clinical Trials Register DRKS00004890; https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do? navigationId=trial.HTML&TRIAL_ID=DRKS00004890 (Archived by WebCite at http://www.webcitation.org/6iyM8dMtx).

5.
Am J Prev Med ; 46(6): 593-604, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24842736

ABSTRACT

BACKGROUND: Previous work suggests that many context-level characteristics of preschools are associated with increased physical activity (PA) in children. PURPOSE: To facilitate assessment of preschools' friendliness toward PA, an item battery as well as comprehensive and short rating scores were developed based on mixed methods with validity and reliability tested. METHODS: Organizational and contextual characteristics of 24 German preschools were assessed by direct observation and semi-structured interviews (September 2008 to April 2009; analyzed in 2012). Twenty-seven items across seven domains of friendliness toward PA were rated independently by two researchers as being limited (0); adequate (1); or extraordinarily (2) friendly toward PA. Values were summed to a comprehensive rating score value (RS-c). To increase feasibility, a short score (RS-s) was developed using an item subset identified by both item-item correlations and positive association with moderate to vigorous PA. Validity of items and scores was tested by their association with preschoolers' accelerometer-measured PA (n=405) in covariate-adjusted multilevel models. Reliability was tested by inter-rater reliability coefficients. RESULTS: Nine of 27 items were included in the RS-s. In the multilevel model, four single items and both the RS-c and RS-s were positively associated with children's moderate to vigorous PA (RS-c: ß=0.5 minutes, p=0.003, explained variance=9%; RS-s: ß=1.3 minutes, p<0.001, variance=23%), but not with light activity or sedentary behavior. Inter-rater reliability was 0.80 (RS-c) and 0.88 (RS-s). CONCLUSIONS: There is potential value for mixed methods in assessing preschools' friendliness toward PA.


Subject(s)
Health Promotion/methods , Motor Activity , Schools/statistics & numerical data , Accelerometry , Child, Preschool , Data Collection , Germany , Humans , Observer Variation , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...