Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Sci Rep ; 11(1): 4200, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33603086

ABSTRACT

Since its emergence in late 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with more than 55 million reported cases and 1.3 million estimated deaths worldwide. While epidemiological and clinical characteristics of COVID-19 have been reported, risk factors underlying the transition from mild to severe disease among patients remain poorly understood. In this retrospective study, we analysed data of 879 confirmed SARS-CoV-2 positive patients admitted to a two-site NHS Trust hospital in London, England, between January 1st and May 26th, 2020, with a majority of cases occurring in March and April. We extracted anonymised demographic data, physiological clinical variables and laboratory results from electronic healthcare records (EHR) and applied multivariate logistic regression, random forest and extreme gradient boosted trees. To evaluate the potential for early risk assessment, we used data available during patients' initial presentation at the emergency department (ED) to predict deterioration to one of three clinical endpoints in the remainder of the hospital stay: admission to intensive care, need for invasive mechanical ventilation and in-hospital mortality. Based on the trained models, we extracted the most informative clinical features in determining these patient trajectories. Considering our inclusion criteria, we have identified 129 of 879 (15%) patients that required intensive care, 62 of 878 (7%) patients needing mechanical ventilation, and 193 of 619 (31%) cases of in-hospital mortality. Our models learned successfully from early clinical data and predicted clinical endpoints with high accuracy, the best model achieving area under the receiver operating characteristic (AUC-ROC) scores of 0.76 to 0.87 (F1 scores of 0.42-0.60). Younger patient age was associated with an increased risk of receiving intensive care and ventilation, but lower risk of mortality. Clinical indicators of a patient's oxygen supply and selected laboratory results, such as blood lactate and creatinine levels, were most predictive of COVID-19 patient trajectories. Among COVID-19 patients machine learning can aid in the early identification of those with a poor prognosis, using EHR data collected during a patient's first presentation at ED. Patient age and measures of oxygenation status during ED stay are primary indicators of poor patient outcomes.


Subject(s)
COVID-19/mortality , Emergency Service, Hospital/statistics & numerical data , Machine Learning , Risk Assessment/methods , Adult , Aged , Aged, 80 and over , Disease Progression , Female , Hospital Mortality/trends , Hospitalization/statistics & numerical data , Hospitals/statistics & numerical data , Humans , London/epidemiology , Male , Middle Aged , Pandemics , ROC Curve , Respiration, Artificial/statistics & numerical data , Retrospective Studies , Risk Factors , SARS-CoV-2/isolation & purification , United Kingdom/epidemiology
2.
Sensors (Basel) ; 19(19)2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31547220

ABSTRACT

Affect recognition is an interdisciplinary research field bringing together researchers from natural and social sciences. Affect recognition research aims to detect the affective state of a person based on observables, with the goal to, for example, provide reasoning for the person's decision making or to support mental wellbeing (e.g., stress monitoring). Recently, beside of approaches based on audio, visual or text information, solutions relying on wearable sensors as observables, recording mainly physiological and inertial parameters, have received increasing attention. Wearable systems enable an ideal platform for long-term affect recognition applications due to their rich functionality and form factor, while providing valuable insights during everyday life through integrated sensors. However, existing literature surveys lack a comprehensive overview of state-of-the-art research in wearable-based affect recognition. Therefore, the aim of this paper is to provide a broad overview and in-depth understanding of the theoretical background, methods and best practices of wearable affect and stress recognition. Following a summary of different psychological models, we detail the influence of affective states on the human physiology and the sensors commonly employed to measure physiological changes. Then, we outline lab protocols eliciting affective states and provide guidelines for ground truth generation in field studies. We also describe the standard data processing chain and review common approaches related to the preprocessing, feature extraction and classification steps. By providing a comprehensive summary of the state-of-the-art and guidelines to various aspects, we would like to enable other researchers in the field to conduct and evaluate user studies and develop wearable systems.


Subject(s)
Wearable Electronic Devices , Humans , Machine Learning , Mental Health
3.
IEEE Trans Biomed Eng ; 62(1): 314-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25167541

ABSTRACT

Gaussian process (GP) models are a flexible means of performing nonparametric Bayesian regression. However, GP models in healthcare are often only used to model a single univariate output time series, denoted as single-task GPs (STGP). Due to an increasing prevalence of sensors in healthcare settings, there is an urgent need for robust multivariate time-series tools. Here, we propose a method using multitask GPs (MTGPs) which can model multiple correlated multivariate physiological time series simultaneously. The flexible MTGP framework can learn the correlation between multiple signals even though they might be sampled at different frequencies and have training sets available for different intervals. Furthermore, prior knowledge of any relationship between the time series such as delays and temporal behavior can be easily integrated. A novel normalization is proposed to allow interpretation of the various hyperparameters used in the MTGP. We investigate MTGPs for physiological monitoring with synthetic data sets and two real-world problems from the field of patient monitoring and radiotherapy. The results are compared with standard Gaussian processes and other existing methods in the respective biomedical application areas. In both cases, we show that our framework learned the correlation between physiological time series efficiently, outperforming the existing state of the art.


Subject(s)
Algorithms , Data Interpretation, Statistical , Models, Biological , Models, Statistical , Normal Distribution , Computer Simulation , Humans , Multivariate Analysis
4.
Int J Comput Assist Radiol Surg ; 10(4): 363-71, 2015 Apr.
Article in English | MEDLINE | ID: mdl-24830524

ABSTRACT

PURPOSE: Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. METHODS: First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. RESULTS: Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. CONCLUSIONS: The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.


Subject(s)
Motion , Radiotherapy, Computer-Assisted/methods , Respiration , Robotics , Algorithms , Humans , Probability , Regression Analysis
5.
Article in English | MEDLINE | ID: mdl-25570648

ABSTRACT

Marker-less optical head-tracking constitutes a comfortable alternative with no exposure to radiation for realtime monitoring in radiation therapy. Supporting information such as tissue thickness has the potential to improve spatial tracking accuracy. Here we study how accurate tissue thickness can be estimated from the near-infrared (NIR) backscatter obtained from laser scans. In a case study, optical data was recorded with a galvanometric laser scanner from three subjects. A tissue ground truth from MRI was robustly matched via customized bite blocks. We show that Gaussian Processes accurately model the relationship between NIR features and tissue thickness. They were able to predict the tissue thickness with less than 0.5 mm root mean square error. Individual scaling factors for all features and an additional incident angle feature had positive effects on this performance.


Subject(s)
Head/diagnostic imaging , Lasers , Phantoms, Imaging , Humans , Magnetic Resonance Imaging , Normal Distribution , Radiography , Spectroscopy, Near-Infrared
6.
Article in English | MEDLINE | ID: mdl-24111026

ABSTRACT

In modern robotic radiotherapy, precise radiation of moving tumors is possible by tracking external optical surrogates. The surrogates are used to compensate for time delays and to predict internal landmarks using a correlation model. The correlation depends significantly on the surrogate position and breathing characteristics of the patient. In this context, we aim to increase the accuracy and robustness of prediction and correlation models by using a multi-modal sensor setup. Here, we evaluate the correlation coefficient of a strain belt, an acceleration and temperature sensor (air flow) with respect to external optical sensors and one internal landmark in the liver, measured by 3D ultrasound. The focus of this study is the influence of breathing artefacts, like coughing and harrumphing. Evaluating seven subjects, we found a strong decrease of the correlation for all modalities in case of artefacts. The results indicate that no precise motion compensation during these times is possible. Overall, we found that apart from the optical markers, the strain belt and temperature sensor data show the best correlation to external and internal motion.


Subject(s)
Artifacts , Movement , Respiration , Robotics/instrumentation , Acceleration , Humans , Male , Temperature
7.
Int J Comput Assist Radiol Surg ; 8(6): 1037-42, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23690167

ABSTRACT

PURPOSE: To successfully ablate moving tumors in robotic radio-surgery, it is necessary to compensate for motion of inner organs caused by respiration. This can be achieved by tracking the body surface and correlating the external movement with the tumor position as it is implemented in the CyberKnife[Formula: see text] Synchrony system. Tracking errors, originating from system immanent time delays, are typically reduced by time series prediction. Many prediction algorithms exploit autoregressive (AR) properties of the signal. Estimating the optimal model order [Formula: see text] for these algorithms constitutes a challenge often solved via grid search or prior knowledge about the signal. METHODS: Aiming at a more efficient approach instead, this study evaluates the Akaike information criterion (AIC), the corrected AIC, and the Bayesian information criterion (BIC) on the first minute of the respiratory signal. Exemplarily, we evaluated the approach for a least mean square (LMS) and a wavelet-based LMS (wLMS) predictor. RESULTS: Analyzing 12 motion traces, orders estimated by AIC had the highest prediction accuracy for both prediction algorithms. Extending the investigations to 304 real motion traces, the prediction error of wLMS using AIC was found to decrease significantly by 85.1 % of the data compared to the original implementation CONCLUSIONS: The overall results suggest that using AIC to estimate the model order [Formula: see text] for prediction algorithms based on AR properties is a valid method which avoids intensive grid search and leads to high prediction accuracy.


Subject(s)
Models, Theoretical , Movement , Neoplasms/surgery , Radiosurgery/methods , Respiration , Algorithms , Bayes Theorem , Computer Systems , Humans , Radiosurgery/instrumentation
8.
Med Image Comput Comput Assist Interv ; 16(Pt 2): 108-15, 2013.
Article in English | MEDLINE | ID: mdl-24579130

ABSTRACT

In modern robotic radiation therapy, tumor movements due to respiration can be compensated. The accuracy of these methods can be increased by time series prediction of external optical surrogates. An algorithm based on relevance vector machines (RVM) is introduced. We evaluate RVM with linear and nonlinear basis functions on a real patient data set containing 304 motion traces and compare it with a wavelet based least mean square algorithm (wLMS), the best algorithm for this data set so far. Linear RVM outperforms wLMS significantly and increases the prediction accuracy for 80.3% of the data. We show that real time prediction is possible in case of linear RVM and discuss how the predicted variance can be used to construct promising hybrid algorithms, which further reduce the prediction error.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Respiratory-Gated Imaging Techniques/methods , Support Vector Machine , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...