Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 81(3): 1714-1725, 2019 03.
Article in English | MEDLINE | ID: mdl-30417940

ABSTRACT

PURPOSE: Cardiac T1 mapping has become an increasingly important imaging technique, contributing novel diagnostic options. However, currently utilized methods are often associated with accuracy problems because of heart rate variations and cardiac arrhythmia, limiting their value in clinical routine. This study aimed to introduce an improved arrhythmia-related robust T1 mapping sequence called RT-TRASSI (real-time Triggered RAdial Single-Shot Inversion recovery). METHODS: All measurements were performed on a 3.0T whole-body imaging system. A real-time feedback algorithm for arrhythmia detection was implemented into the previously described pulse sequence. A programmable motion phantom was constructed and measurements with different simulated arrhythmias arranged. T1 mapping accuracy and susceptibility to artifacts were analyzed. In addition, in vivo measurements and comparisons with 3 prevailing T1 mapping sequences (MOLLI, ShMOLLI, and SASHA) were carried out to investigate the occurrence of artifacts. RESULTS: In the motion phantom measurements, RT-TRASSI showed excellent agreement with predetermined reference T1 values. Percentage scattering of the T1 values ranged from -0.6% to +1.9% in sinus rhythm and -1.0% to +3.1% for high-grade arrhythmias. In vivo, RT-TRASSI showed diagnostic image quality with only 6% of the acquired T1 maps including image artifacts. In contrast, more than 40% of the T1 maps acquired with MOLLI, ShMOLLI, or SASHA included motion artifacts. CONCLUSION: Accuracy issues because of heart rate variability and arrhythmia are a prevailing problem in current cardiac T1 mapping techniques. With RT-TRASSI, artifacts can be minimized because of the short acquisition time and effective real-time feedback, avoiding potential data acquisition during systolic heart phase.


Subject(s)
Arrhythmias, Cardiac/diagnostic imaging , Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Aged , Algorithms , Artifacts , Female , Healthy Volunteers , Heart Rate , Humans , Image Interpretation, Computer-Assisted/methods , Male , Motion , Phantoms, Imaging , Reproducibility of Results
2.
Quant Imaging Med Surg ; 5(6): 799-805, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26807361

ABSTRACT

BACKGROUND: In this study, two practical dual-tuned birdcage configurations for quantitative assessment of articular cartilage with sodium magnetic resonance imaging (MRI) were designed and compared. METHODS: Two 1.5 T dual-tuned birdcages, a four-ring birdcage (FRB) and an alternating rungs birdcage (ARB), were built and then characterized by bench and MRI measurements. The relative uniformity (RU) and the efficiency of the coils were compared using (23)Na and (1)H B1 maps. In vivo images of a volunteer were acquired. RESULTS: Bench measurements showed matching and decoupling coefficients of the quadrature channels lower than -20 dB. The RUs and 180° pulse amplitudes of the FRB/ARB were determined as: (1)H RU =94.4/74.4%, (23)Na RU =95.2/93.6%, (1)H 180° pulse amplitude =69.2/75.4 V and (23)Na 180° pulse amplitude =45.1/45.9 V. The in vivo (23)Na images acquired with the FRB show a signal-to-noise ratio (SNR) of 6 to 14 in the cartilage. CONCLUSIONS: Due to its superior (1)H homogeneity and efficiency and its slightly better (23)Na homogeneity, the FRB is the overall preferred coil for the given requirements of this study. The achieved in vivo SNR is adequate for quantitative (23)Na and high resolution (1)H imaging.

3.
J Oral Maxillofac Surg ; 71(7): 1159-69, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23611603

ABSTRACT

PURPOSE: To assess the feasibility of magnetic resonance imaging (MRI) of dental abnormalities in children. MATERIALS AND METHODS: The study included 16 patients (mean age, 10.8 yr) prospectively selected from 1,500 orthodontic patients. The selected patients included 3 with a mesiodens, 9 with supernumerary teeth other than a mesiodens, 1 with gemination, 1 with dilacerations, 1 with transmigration, and 1 with transposition. Three-dimensional (3D) images were acquired on a 1.5-T MRI scanner using a 3D turbo spin echo pulse sequence with a voxel size of 0.8 × 0.8 × 1 mm. The measurement time was 4 to 5 minutes. RESULTS: Using natural MRI contrast, the teeth, dental pulp, mandibular canal, and cortical bone could be clearly delineated. The position and shape of malformed teeth could be assessed in all 3 spatial dimensions. CONCLUSION: MRI was found to be a well-tolerated imaging modality for the diagnosis of dental abnormalities in children and for orthodontic treatment and surgical planning. Compared with conventional radiography, dental MRI provides the advantage of 3-dimensionality and complete elimination of ionizing radiation, which is particularly relevant for repeated examinations in children.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Tooth Abnormalities/diagnosis , Adolescent , Anatomy, Cross-Sectional , Child , Dental Pulp/pathology , Feasibility Studies , Fused Teeth/diagnosis , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Mandible/pathology , Prospective Studies , Tooth Eruption, Ectopic/diagnosis , Tooth Root/abnormalities , Tooth, Supernumerary/diagnosis
4.
J Cardiovasc Magn Reson ; 14: 12, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22296883

ABSTRACT

BACKGROUND: One of the safety concerns when performing electrophysiological (EP) procedures under magnetic resonance (MR) guidance is the risk of passive tissue heating due to the EP catheter being exposed to the radiofrequency (RF) field of the RF transmitting body coil. Ablation procedures that use catheters with irrigated tips are well established therapeutic options for the treatment of cardiac arrhythmias and when used in a modified mode might offer an additional system for suppressing passive catheter heating. METHODS: A two-step approach was chosen. Firstly, tests on passive catheter heating were performed in a 1.5 T Avanto system (Siemens Healthcare Sector, Erlangen, Germany) using a ASTM Phantom in order to determine a possible maximum temperature rise. Secondly, a phantom was designed for simulation of the interface between blood and the vascular wall. The MR-RF induced temperature rise was simulated by catheter tip heating via a standard ablation generator. Power levels from 1 to 6 W were selected. Ablation duration was 120 s with no tip irrigation during the first 60 s and irrigation at rates from 2 ml/min to 35 ml/min for the remaining 60 s (Biotronik Qiona Pump, Berlin, Germany). The temperature was measured with fluoroscopic sensors (Luxtron, Santa Barbara, CA, USA) at a distance of 0 mm, 2 mm, 4 mm, and 6 mm from the catheter tip. RESULTS: A maximum temperature rise of 22.4°C at the catheter tip was documented in the MR scanner. This temperature rise is equivalent to the heating effect of an ablator's power output of 6 W at a contact force of the weight of 90 g (0.883 N). The catheter tip irrigation was able to limit the temperature rise to less than 2°C for the majority of examined power levels, and for all examined power levels the residual temperature rise was less than 8°C. CONCLUSION: Up to a maximum of 22.4°C, the temperature rise at the tissue surface can be entirely suppressed by using the catheter's own irrigation system. The irrigated tip system can be used to increase MR safety of EP catheters by suppressing the effects of unwanted passive catheter heating due to RF exposure from the MR scanner.


Subject(s)
Catheter Ablation/instrumentation , Catheters , Magnetic Resonance Imaging, Interventional/instrumentation , Temperature , Catheter Ablation/adverse effects , Equipment Design , Equipment Failure , Equipment Safety , Magnetic Resonance Imaging, Interventional/adverse effects , Materials Testing , Phantoms, Imaging , Therapeutic Irrigation
SELECTION OF CITATIONS
SEARCH DETAIL
...