Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthet Dent ; 128(1): 73-78, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33546860

ABSTRACT

STATEMENT OF PROBLEM: Studies investigating the mechanical stability of lithium disilicate-strengthened aluminosilicate glass-ceramic that do not require sintering after milling compared with other computer-aided design and computer-aided manufacturing (CAD-CAM) materials are lacking. PURPOSE: The purpose of this in vitro study was to investigate the flexural strength of CAD-CAM zirconia, lithium disilicate, and lithium disilicate-strengthened aluminosilicate glass-ceramics with and without fatigue conditions. MATERIAL AND METHODS: Specimens (N=90, n=15) (12×4×3 mm) from the following CAD-CAM materials were prepared and polished: lithium disilicate glass-ceramic (IPS e.max CAD); lithium disilicate-strengthened aluminosilicate glass-ceramic (N!ce); and zirconium dioxide ceramic (IPS e.max ZirCAD). All specimens were divided into 2 subgroups: immediate testing without aging and simulation of aging by using a mastication simulator for 1 200 000 cycles (5 °C-55 °C). Thereafter, flexural strength testing was performed by using a universal testing machine (1 mm/min) on nonaged and aged specimens. The data were evaluated by using nonparametric 2-way ANOVA and Wilcoxon rank post hoc tests (α=.05). RESULTS: Both the material type and aging significantly affected the results (P<.001). The interaction was not significant (P>.05). Under nonaged conditions, zirconium dioxide ceramic (1136 ±162 MPa) showed significantly higher mean ±standard deviation flexural strength (P<.001) than lithium disilicate (304 ±34 MPa) and lithium disilicate-strengthened aluminosilicate glass-ceramic (202 ±17 MPa). The glass-ceramic groups were also significantly different from each other (P<.001). After aging, zirconium dioxide (1087.9 ±185.3 MPa) also presented significantly higher mean ±standard deviation flexural strength (P<.001) than lithium disilicate (259 ±62 MPa) and lithium disilicate-strengthened aluminosilicate glass-ceramic (172 ±11 MPa) (P<.001). Aging significantly decreased the flexural strength of lithium disilicate (14.6%) (P=.03) and lithium disilicate-strengthened aluminosilicate glass-ceramic (14.5%) (P=.01) but had minimal effect on the zirconium dioxide ceramic (4.3%) (P=.29). CONCLUSIONS: Among the tested CAD-CAM materials, the mechanical performance of lithium disilicate-strengthened aluminosilicate glass-ceramic was comparable with that of lithium disilicate and considerably lower than that of zirconia. Aging decreased the flexural strength of both lithium disilicate and lithium disilicate-strengthened aluminosilicate glass-ceramic.


Subject(s)
Dental Porcelain , Materials Testing , Zirconium , Aged , Aluminum Silicates , Ceramics , Computer-Aided Design , Humans , Surface Properties
2.
Molecules ; 25(22)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203096

ABSTRACT

Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.


Subject(s)
Coumarins/chemistry , Light , Nucleotides/chemistry , Physical Phenomena , Adenosine Triphosphate/chemistry , Fluorescence , Photolysis
3.
4.
J Am Chem Soc ; 142(24): 10606-10611, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32459478

ABSTRACT

Inositol pyrophosphates constitute a family of hyperphosphorylated signaling molecules involved in the regulation of glucose uptake and insulin sensitivity. While our understanding of the biological roles of inositol heptaphosphates (PP-InsP5) has greatly improved, the functions of the inositol octaphosphates ((PP)2-InsP4) have remained unclear. Here we present the synthesis of two enantiomeric cell-permeant and photocaged (PP)2-InsP4 derivatives and apply them to study the functions in living ß-cells. Photorelease of the naturally occurring isomer 1,5-(PP)2-InsP4 led to an immediate and concentration-dependent reduction of intracellular calcium oscillations, while other caged inositol pyrophosphates (3,5-(PP)2-InsP4, 5-PP-InsP5, 1-PP-InsP5, 3-PP-InsP5) showed no immediate effect. Furthermore, uncaging of 1,5-(PP)2-InsP4 but not 3,5-(PP)2-InsP4 induced translocation of the C2AB domain of granuphilin from the plasma membrane to the cytosol. Granuphilin is involved in membrane docking of secretory vesicles. This suggests that 1,5-(PP)2-InsP4 impacts ß-cell activity by regulating granule localization and/or priming and calcium signaling in concert.


Subject(s)
Calcium/metabolism , Inositol Phosphates/metabolism , Calcium/chemistry , Inositol Phosphates/chemical synthesis , Inositol Phosphates/chemistry , Molecular Conformation , Photolysis
5.
PLoS One ; 15(1): e0227698, 2020.
Article in English | MEDLINE | ID: mdl-31978066

ABSTRACT

With the increase in wind turbines, bird collisions have developed as a potential hazard. In the federal state of Brandenburg, Germany, despite the on-going mitigation efforts of increasing the distances of wind turbines from the breeding areas of the more severely affected populations of red kites (Milvus milvus), the additional detrimental influences on the buzzard populations (Buteo buteo) have added to the challenges for wind power expansion. Using data on the regional distribution of the buzzards, along with their carcass detections around the wind turbines (WTs), we aimed to better understand their collision distribution patterns in relation to their habitat use patterns to predict their exposure to collision risk using boosted regression trees (BRTs). Additionally, we integrated the developed collision potential map with the regional density map of buzzards to identify areas of increased strike susceptibility in turbine installations. Our study showed that the buzzard collisions were primarily concentrated at the turbines situated at sensitive distances from the edges of watercourses (>1000 metres), as well as those along the edges of grasslands (>750 metres), in the green open areas around/areas with minimal settlements (750 metres-1750 metres), and along the edges of bushlands (>1500 metres), together explaining 58% of the variance in their collision distribution. Conclusively, our study is applicable to conservation because it demonstrates the identification of potential collision areas along with the causes of the collisions, in addition to demonstrating the benefits of incorporating a species collision dataset as a proxy for species presence into species distribution models to make informed management decisions to eventually combat biodiversity loss.


Subject(s)
Birds/injuries , Renewable Energy/adverse effects , Wind , Animals , Biodiversity , Conservation of Natural Resources , Ecosystem , Female , Germany , Male , Models, Theoretical , Population Density , Renewable Energy/statistics & numerical data
6.
Chemistry ; 26(11): 2298-2308, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31637774

ABSTRACT

There has been a recent upsurge in the study and application of approaches utilizing cyclotriphosphate 1 (cyclo-TP, also known as trimetaphosphate, TMP) and/or proceeding through its analogues in synthetic chemistry to access modified oligo- and polyphosphates. This is especially useful in the area of chemical nucleotide synthesis, but by no means restricted to it. Enabled by new high yielding and easy-to-implement methodologies, these approaches promise to open up an area of research that has previously been underappreciated. Additionally, refinements of concepts of prebiotic phosphorylation chemistry have been disclosed that ultimately rely on cyclo-TP 1 as a precursor, placing it as a potentially central compound in the emergence of life. Given the importance of such concepts for our understanding of prebiotic chemistry in combination with the need to readily access modified polyphosphates for structural and biological studies, this paper will discuss selected recent developments in the field of cyclo-TP chemistry, briefly touch on ultraphosphate chemistry, and highlight areas in which further developments can be expected.

7.
Chem Commun (Camb) ; 55(37): 5339-5342, 2019 May 10.
Article in English | MEDLINE | ID: mdl-30973558

ABSTRACT

A tunable chemoenzymatic strategy provides access to the entire class of magic spot nucleotides and modified analogues. The approach combines chemoselective bisphosphorylations using phosphoramidites with regioselective ribonuclease T2 cyclo-phosphate hydrolysis, leading to flexible and simple gram-scale operations.


Subject(s)
Endoribonucleases/metabolism , Nucleotides/biosynthesis , Biocatalysis , Cyclization , Electrophoresis, Polyacrylamide Gel , Hydrolysis , Nucleotides/chemistry , Phosphates/chemistry , Phosphates/metabolism , Stereoisomerism
8.
Sci Rep ; 8(1): 3777, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491479

ABSTRACT

Biodiversity-related impacts at wind energy facilities have increasingly become a cause of conservation concern, central issue being the collision of birds. Utilizing spatial information of their carcass detections at wind turbines (WTs), we quantified the detections in relation to the metric distances of the respective turbines to different land-use types. We used ecological niche factor analysis (ENFA) to identify combinations of land-use distances with respect to the spatial allocation of WTs that led to higher proportions of collisions among the worst affected bird-groups: Buntings, Crows, Larks, Pigeons and Raptors. We also assessed their respective similarities to the collision phenomenon by checking for overlaps amongst their distance combinations. Crows and Larks showed the narrowest "collision sensitive niche"; a part of ecological niche under higher risk of collisions with turbines, followed by that of Buntings and Pigeons. Raptors had the broadest niche showing significant overlaps with the collision sensitive niches of the other groups. This can probably be attributed to their larger home range combined with their hunting affinities to open landscapes. Identification of collision sensitive niches could be a powerful tool for landscape planning; helping avoid regions with higher risks of collisions for turbine allocations and thus protecting sensitive bird populations.


Subject(s)
Birds/physiology , Ecosystem , Flight, Animal/physiology , Power Plants , Renewable Energy/adverse effects , Animal Distribution , Animals , Conservation of Natural Resources , Germany , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...