Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 20(9): 1388-1399, 2023 09.
Article in English | MEDLINE | ID: mdl-37474806

ABSTRACT

Homology-directed repair (HDR), a method for repair of DNA double-stranded breaks can be leveraged for the precise introduction of mutations supplied by synthetic DNA donors, but remains limited by low efficiency and off-target effects. In this study, we report HDRobust, a high-precision method that, via the combined transient inhibition of nonhomologous end joining and microhomology-mediated end joining, resulted in the induction of point mutations by HDR in up to 93% (median 60%, s.e.m. 3) of chromosomes in populations of cells. We found that, using this method, insertions, deletions and rearrangements at the target site, as well as unintended changes at other genomic sites, were largely abolished. We validated this approach for 58 different target sites and showed that it allows efficient correction of pathogenic mutations in cells derived from patients suffering from anemia, sickle cell disease and thrombophilia.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Recombinational DNA Repair , DNA Breaks, Double-Stranded , DNA End-Joining Repair , DNA
2.
mSphere ; 6(2)2021 03 03.
Article in English | MEDLINE | ID: mdl-33658275

ABSTRACT

The human pathogen Clostridioides difficile has evolved into the leading cause of nosocomial diarrhea. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Although C. difficile features an anaerobic lifestyle, we determined a remarkably high oxygen tolerance of the laboratory reference strain 630Δerm A mutation of a single nucleotide (single nucleotide polymorphism [SNP]) in the DNA sequence (A to G) of the gene encoding the regulatory protein PerR results in an amino acid substitution (Thr to Ala) in one of the helices of the helix-turn-helix DNA binding domain of this transcriptional repressor in C. difficile 630Δerm PerR is a sensor protein for hydrogen peroxide and controls the expression of genes involved in the oxidative stress response. We show that PerR of C. difficile 630Δerm has lost its ability to bind the promoter region of PerR-controlled genes. This results in a constitutive derepression of genes encoding oxidative stress proteins such as a rubrerythrin (rbr1) whose mRNA abundance under anaerobic conditions was increased by a factor of about 7 compared to its parental strain C. difficile 630. Rubrerythrin repression in strain 630Δerm could be restored by the introduction of PerR from strain 630. The permanent oxidative stress response of C. difficile 630Δerm observed here should be considered in physiological and pathophysiological investigations based on this widely used model strain.IMPORTANCE The intestinal pathogen Clostridioides difficile is one of the major challenges in medical facilities nowadays. In order to better combat the bacterium, detailed knowledge of its physiology is mandatory. C. difficile strain 630Δerm was generated in a laboratory from the patient-isolated strain C. difficile 630 and represents a reference strain for many researchers in the field, serving as the basis for the construction of insertional gene knockout mutants. In our work, we demonstrate that this strain is characterized by an uncontrolled oxidative stress response as a result of a single-base-pair substitution in the sequence of a transcriptional regulator. C. difficile researchers working with model strain 630Δerm should be aware of this permanent stress response.


Subject(s)
Clostridioides difficile/genetics , Oxidative Stress/genetics , Point Mutation , Repressor Proteins/genetics , Transcription Factors/genetics , DNA, Bacterial/genetics , Gene Expression Regulation, Bacterial , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...