Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Nanoscale Adv ; 6(13): 3329-3337, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38933867

ABSTRACT

Water has shown a myriad of highly interesting properties and behaviors, such as very low friction, phase transition under unexpected conditions, massive property alterations, etc. inside strong nanoconfinements of few-nanometer to sub-nanometer diameters. Water-water hydrogen bonding is one of the most important factors dictating such water behavior and properties inside such strong nanoconfinements. In this paper, we employ Reactive Force Field (ReaxFF) molecular dynamics (MD) simulations for studying multiple facets of such water-water hydrogen bonds (HBs) inside boron-nitride nanotubes (BNNTs) having diameters ranging from a few nanometers to sub-nanometers. First, the strength of the water-water HB interactions, as a function of the HB configuration, is quantified by studying the corresponding PMF (potential of mean force). For water present in extreme confinements (BNNTs with sub-nanometric diameters), we see completely isolated HB basins. On the other hand, for bulk water the HB basin is connected (via a saddle point) to a nearby second PMF well. Therefore, our analysis successfully distinguishes the HB characteristics between the cases of water in extreme confinement and bulk water. Second, we study the kinetics of such water-water HBs: HBs formed by a given pair of water molecules in extreme confinements show a much larger probability of remaining intact once formed or re-forming after they have been broken. Both these results, which shed new light on water-water hydrogen bonding inside strong nanoconfinements, can be explained by the single-file structure formed by the water molecules in extreme BNNT confinements.

2.
ACS Appl Mater Interfaces ; 16(19): 24274-24294, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38699930

ABSTRACT

In the field of bone tissue engineering, recently developed Zn alloy scaffolds are considered potential candidates for biodegradable implants for bone regeneration and defect reconstruction. However, the clinical success of these alloys is limited due to their insufficient surface bioactivities. Further, the higher concentration of Zn2+ produced during degradation promotes antibacterial activity, but deteriorates osteogenic properties. This study fabricated an Azadirachta indica (neem)-assisted brushite-hydroxyapatite (HAp) coating on the recently developed Zn-2Cu-0.5Mg alloy to tackle the above dilemma. The microstructure, degradation behavior, antibacterial activity, and hemocompatibility, along with in vitro and in vivo cytocompatibility of the coated alloys, are systematically investigated. Microstructural analysis reveals flower-like morphology with uniformly grown flakes for neem-assisted deposition. The neem-assisted deposition significantly improves the adhesion strength from 12.7 to 18.8 MPa, enhancing the mechanical integrity. The potentiodynamic polarization study shows that the neem-assisted deposition decreases the degradation rate, with the lowest degradation rate of 0.027 mm/yr for the ZHN2 sample. In addition, the biomineralization process shows the apatite formation on the deposited coating after 21 days of immersion. In vitro cytotoxicity assay exhibits the maximum cell viability of 117% for neem-assisted coated alloy in 30% extract after 5d and the improved cytocompatibility which is due to the controlled release of Zn2+ ions. Meanwhile, neem-assisted coated alloy increases the ZOI by 32 and 24% for Gram-positive and Gram-negative bacteria, respectively. Acceptable hemolysis (<5%) and anticoagulation parameters demonstrate a promising hemocompatibility of the coated alloy. In vivo implantation illustrates a slight inflammatory response and vascularization after 2 weeks of subcutaneous implantation, and neo-bone formation in the defect areas of the rat femur. Micro-CT and histology studies demonstrate better osseointegration with satisfactory biosafety response for the neem-assisted coated alloy as compared to that without neem-assisted deposition. Hence, this neem-assisted brushite-Hap coating strategy elucidates a new perspective on the surface modification of biodegradable implants for the treatment of bone defects.


Subject(s)
Alloys , Calcium Phosphates , Coated Materials, Biocompatible , Zinc , Alloys/chemistry , Alloys/pharmacology , Zinc/chemistry , Zinc/pharmacology , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Calcium Phosphates/chemistry , Calcium Phosphates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Humans , Durapatite/chemistry , Durapatite/pharmacology , Materials Testing , Mice , Green Chemistry Technology , Absorbable Implants
3.
Pathogens ; 13(5)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38787210

ABSTRACT

This study demonstrates the capability of Raman microscopy for detecting structural differences in Giardia cells exposed to different drugs and incubation times. While metronidazole (MTZ) visibly affects the cells by inducing extracellular vesicle releases of toxic iron intermediates and modified triple-bond moieties, oseltamivir (OSM) alters the phenylalanine and lipid structures. Modifications in the heme protein environment and the transformation of iron from ferric to ferrous observed for both drug treatments are more notable for MTZ. Different contents and amounts of vesicle excretion are detected for 24 h or 48 h with MTZ incubation. At a shorter drug exposure, releases of altered proteins, glycogen, and phospholipids dominate. Agglomerates of transformed iron complexes from heme proteins and multiple-bond moieties prevail at 48 h of treatment. No such vesicle releases are present in the case of OSM usage. Drug incorporations into the cells and their impact on the plasma membrane and the dynamics of lipid raft confirmed by confocal fluorescence microscopy reveal a more destructive extent by OSM, corroborating the Raman results. Raman microscopy provides a broader understanding of the multifaceted factors and mechanisms responsible for giardiasis treatment or drug resistance by enabling a label-free, simultaneous monitoring of structural changes at the cellular and molecular levels.

4.
Chem Commun (Camb) ; 60(48): 6093-6129, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38819435

ABSTRACT

Densely grafted polymer and polyelectrolyte (PE) brushes, owing to their significant abilities to functionalize surfaces for a plethora of applications in sensing, diagnostics, current rectification, surface wettability modification, drug delivery, and oil recovery, have attracted significant attention over the past several decades. Unfortunately, most of the attention has primarily focused on understanding the properties of the grafted polymer and the PE chains with little attention devoted to studying the behavior of the brush-supported ions (counterions needed to screen the PE chains) and water molecules. Over the past few years, our group has been at the forefront of addressing this gap: we have employed all-atom molecular dynamics (MD) simulations for studying a wide variety of polymer and PE brush systems with specific attention to unraveling the properties and behavior of the brush-supported water molecules and ions. Our findings have revealed some of the most fascinating properties of such brush-supported ions and water molecules, including the most remarkable control of nanofluidic transport afforded by the specific ion and water responses induced by the PE brushes grafted on the inner walls of the nanochannel. This feature article aims to summarize some of our key contributions associated with such atomistic simulations of polymer and PE brushes and brush-supported water molecules and counterions.

5.
ACS Appl Bio Mater ; 7(5): 2966-2981, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38652577

ABSTRACT

This study presents a facile fabrication of 58S bioactive glass (BG)-polymer composite coatings on a 316L stainless steel (SS) substrate using the electrophoretic deposition technique. The suspension characteristics and deposition kinetics of BG, along with three different polymers, namely ethylcellulose (EC), poly(acrylic acid) (PAA), and polyvinylpyrrolidone (PVP), have been utilized to fabricate the coatings. Among all coatings, 58S BG and EC polymers are selected as the final composite coating (EC6) owing to their homogeneity and good adhesion. EC6 coating exhibits a thickness of ∼18 µm and an average roughness of ∼2.5 µm. Herein, EC6 demonstrates better hydroxyapatite formation compared to PAA and PVP coatings in simulated body fluid-based mineralization studies for a period of 28 days. Corrosion studies of EC6 in phosphate-buffered saline further confirm the higher corrosion resistance properties after 14 days. In vitro cytocompatibility studies using human placental mesenchymal stem cells demonstrate an increase in cellular viability, attachment, and higher proliferation compared to the bare SS substrate. EC6 coatings promote osteogenic differentiation, which is confirmed via the upregulation of the OPN and OCN genes. Moreover, the EC6 sample exhibits improved antibacterial properties against Escherichia coli and Staphylococcus aureus compared to the uncoated ones. The findings of this work emphasize the potential of electrophoretically fabricated BG-EC composite coatings on SS substrates for orthopedic applications.


Subject(s)
Coated Materials, Biocompatible , Glass , Materials Testing , Polymers , Stainless Steel , Stainless Steel/chemistry , Humans , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Glass/chemistry , Polymers/chemistry , Polymers/pharmacology , Corrosion , Particle Size , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Electrophoresis , Cell Survival/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Microbial Sensitivity Tests , Cell Proliferation/drug effects
6.
ACS Appl Mater Interfaces ; 16(8): 10601-10622, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38376231

ABSTRACT

Stainless steel (316L SS) has been widely used in orthopedic, cardiovascular stents, and other biomedical implant applications due to its strength, corrosion resistance, and biocompatibility. To address the weak interaction between steel implants and tissues, it is a widely adopted strategy to enhance implant performance through the application of bioactive coatings. In this study, Cu-doped brushite coatings were deposited successfully through pulse electrodeposition on steel substrates facilitated with a biosurfactant (BS) (i.e., surfactin). Further, the combined effect of various concentrations of Cu ions and BS on the structural, electrochemical, and biological properties was studied. The X-ray diffraction (XRD) confirms brushite composition with Cu substitution causing lattice contraction and a reduced crystallite size. The scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) studies reveal the morphological changes of the coatings with the incorporation of Cu, which is confirmed by X-ray photoelectron spectroscopy (XPS) and elemental mapping. The Fourier transform infrared (FTIR) and Raman spectroscopy confirm the brushite and Cu doping in the coatings, respectively. Increased surface roughness and mechanical properties of Cu-doped coatings were analyzed by using atomic force microscopic (AFM) and nanohardness tests, respectively. Electrochemical assessments demonstrate corrosion resistance enhancement in Cu-doped coatings, which is further improved with the addition of biosurfactants. In vitro biomineralization studies show the Cu-doped coating's potential for osseointegration, with added stability. The cytocompatibility of the coatings was analyzed using live/dead and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays; cell adhesion, proliferation, and migration studies were evaluated using SEM. Antibacterial assays highlight significant improvement in the antibacterial properties of Cu-doped coatings with BS. Thus, the developed Cu-doped brushite coatings with BS demonstrate their potential in the realm of biomedical implant technologies, paving the way for further exploration.


Subject(s)
Calcium Phosphates , Stainless Steel , Calcium Phosphates/chemistry , Stainless Steel/chemistry , Anti-Bacterial Agents/chemistry , Corrosion , Stents , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
7.
Cell Biochem Funct ; 42(1): e3910, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269524

ABSTRACT

Adiponectin is an antidiabetic endogenous adipokine that plays a protective role against the unfavorable metabolic sequelae of obesity. Recent evidence suggests a sinister link between hypoadiponectinemia and development of insulin resistance/type 2 diabetes (T2D). Adiponectin's insulin-sensitizing property is mediated through the specific adiponectin receptors R1 and R2, which activate the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR) α pathways. AdipoAI is a novel synthetic analogue of endogenous adiponectin with possibly similar pharmacological effects. Thus, there is a need of orally active small molecules that activate Adipoq subunits, and their downstream signaling, which could ameliorate obesity related type 2 diabetes. In the study we aim to investigate the effects of AdipoAI on obesity and T2D. Through in-vitro and in-vivo analyses, we investigated the antidiabetic potentials of AdipoAI and compared it with AdipoRON, another orally active adiponectin receptors agonist. Our results showed that in-vitro treatment of AdipoAI (0-5 µM) increased adiponectin receptor subunits AdipoR1/R2 with increase in AMPK and APPL1 protein expression in C2C12 myotubes. Similarly, in-vivo, oral administration of AdipoAI (25 mg/kg) observed similar effects as that of AdipoRON (50 mg/kg) with improved control of blood glucose and insulin sensitivity in diet-induced obesity (DIO) mice models. Further, AdipoAI significantly reduced epididymal fat content with decrease in inflammatory markers and increase in PPAR-α and AMPK levels and exhibited hepatoprotective effects in liver. Further, AdipoAI and AdipoRON also observed similar results in adipose tissue. Thus, our results suggest that low doses of orally active small molecule agonist of adiponectin AdipoAI can be a promising therapeutic target for obesity and T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Hypoglycemic Agents/pharmacology , Diabetes Mellitus, Type 2/drug therapy , AMP-Activated Protein Kinases , Adiponectin , Peroxisome Proliferator-Activated Receptors , Receptors, Adiponectin , Obesity/drug therapy
8.
Langmuir ; 40(6): 2946-2956, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38295136

ABSTRACT

Bottlebrush polymers (BBPs), characterized by grafted polymer side chains on linear backbone polymer chain, have emerged as a unique and versatile class of macromolecules with extensive applications in the fields of material science, electronics, battery materials, self-healing technology, etc. In this paper, we employ all-atom molecular dynamics (MD) simulations to present a comprehensive study of poly(methyl methacrylate)-g-poly(2-ethyl-2-oxazoline) (PMMA-g-PEtOx) BBP and its structural and hydration properties for varying number of backbone monomers (NBB) and side chain monomers (NSC), as well as properties of water molecules supported by the BBP. We find that the radius of gyration follows a scaling of Rg ∼NSC0.36 for smaller grafts and Rg ∼ NSC0.52-0.58 for longer grafts. We also find that the overall shape of the bottlebrush goes from a rod to sphere-like shape with the increase in NSC. Both the hydration per side chain monomer and hydrogen bonds (HBs) per oxygen and nitrogen of the side chain monomer reduce with an increase in NSC, caused by a corresponding enhancement in localization of the side chain monomers in the interior of the BBP. Furthermore, steric influences ensure the number of water-oxygen HBs is much more than the number of water-nitrogen HBs (with oxygen and nitrogen atoms belonging to the monomer side chains). Also, the BBP-supported water molecules demonstrate two distinctly ordered domains with one more structured and one less structured. The more structured domain disappears with an increase in NSC that causes more side chain monomers to localize in the interior of the BBPs. Finally, we observe that despite the highly negative partial charges of the oxygen and nitrogen atoms (of the side chain monomers), the dipole orientation distributions of water molecules around these atoms exhibit the presence of a neutral environment rather than an anionic environment. Overall, we anticipate that our study will generate significant interest in probing the various BBP systems in greater atomistic detail.

9.
Forensic Sci Med Pathol ; 20(1): 136-148, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37106271

ABSTRACT

Wound age estimation is a crucial medicolegal task for forensic pathologists. The main objective of the current study was to evaluate the ability of the histopathological profile and immunohistochemical markers (CD14 and IL-8) to predict the age of abrasion and, furthermore, identify the relationship between the histopathological profile and immunohistochemical markers in abrasion aging. The study involved postmortem cases (n = 246) of abrasion injuries in which the injury infliction time was known. The test skin samples were taken from the abrasion site, and an adjacent area of uninjured skin was sampled for control. Hematoxylin and eosin stain was applied to tissue sections for the histopathological analysis. The semi-quantitative evaluation was made for expressing immunohistochemical markers CD14 and IL-8 on the infiltrating inflammatory cells. The study showed that the age of abrasion was significantly higher (p < 0.05) among the cases with positive staining than those with negative staining for both CD14 and IL-8. Additionally, the study found a significant association between the age of the abrasion and the IHC staining for IL-8. However, no significant association was seen between the age of abrasion and the CD-14 IHC staining. The odds ratio (95% confidence interval) for more than 72 h of the age of abrasion was compared to 0 to 72 h of the age of abrasion. The odds ratios were 39.00 (4.177-364.13) for the predominant mononuclear cell infiltration and 84.50 (9.287-768.814) for cases with the appearance of fibroblast, granulation tissue, and collagen deposition when compared to an unremarkable change on histopathological examination. Positive staining of immunohistochemical markers CD14 and IL-8 for the age of abrasion of more than 72 h showed a sensitivity of 40% and 80.95%, respectively, and specificity of 71.6% and 52.5%, respectively. The quantification of the histopathological changes of predominant mononuclear cell infiltration and the appearance of fibroblast, granulation tissue formation, and collagen deposition showed a significant correlation for the age of abrasion of more than 72 h. The immunohistochemical analysis revealed IL-8 as a more accurate marker than CD14 in identifying abrasions older than 72 h.


Subject(s)
Soft Tissue Injuries , Wound Healing , Humans , Interleukin-8 , Collagen , Aging , Autopsy
10.
J Phys Chem B ; 128(1): 381-392, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38148252

ABSTRACT

We employ an all-atom molecular dynamics (MD) simulation framework to unravel water microstructure and ion properties for cationic [poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride] (PMETAC) brushes with chloride ions as counterions. First, we identify locally separate water domains (or first hydration shells) each around {N(CH3)3}+ and the C═O functional groups of the PMETAC chain and one around the Cl- ion. These first hydration shells around the respective moieties overlap, and the extent of the overlap depends on the nature of the species triggering it. Second, despite the overlap, the water molecules in these domains demonstrate disparate properties dictated by the properties of the atoms and groups around which they are located. For example, the presence of the methyl groups makes the {N(CH3)3}+ group trigger apolar hydration as evidenced by the corresponding orientation of the dipole of the water molecules around the {N(CH3)3}+ moiety. These water molecules around the {N(CH3)3}+ group also have enhanced tetrahedrality compared to the water molecules constituting the hydration layer around the C═O group and the Cl- counterion. Our simulations also identify that there is an intervening water layer between the Cl- ion and {N(CH3)3}+ group: this layer prevents the Cl- ion from coming very close to the {N(CH3)3}+ group. As a consequence, there is a significantly large mobility of the Cl- ions inside the PMETAC brush layer. Furthermore, the C═O group of the polyelectrolyte (PE) chain, due to the partial negative charge on the oxygen atom and the specific structure of the PMETAC brush system, demonstrates strongly hydrophilic behavior and enforces a specific dipole response of water molecules analogous to that experienced by water around anionic species of high charge density. In summary, our findings confirm that PMETAC brushes undergo hydrophilic hydration at one site and apolar hydration at another site and ensure large mobility of the supported Cl- counterions.

11.
Int J Mol Sci ; 24(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834026

ABSTRACT

Inhibitory crosstalk between estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AHR) regulates 17ß-estradiol (E2)-dependent breast cancer cell signaling. ERα and AHR are transcription factors activated by E2 and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), respectively. Dietary ligands resveratrol (RES) and 3,3'diindolylmethane (DIM) also activate ERα while only DIM activates AHR and RES represses it. DIM and RES are reported to have anti-cancer and anti-inflammatory properties. Studies with genome-wide targets and AHR- and ERα-regulated genes after DIM and RES are unknown. We used chromatin immunoprecipitation with high-throughput sequencing and transcriptomics to study ERα as well as AHR coregulation in MCF-7 human breast cancer cells treated with DIM, RES, E2, or TCDD alone or E2+TCDD for 1 and 6 h, respectively. ERα bound sites after being DIM enriched for the AHR motif but not after E2 or RES while AHR bound sites after being DIM and E2+TCDD enriched for the ERE motif but not after TCDD. More than 90% of the differentially expressed genes closest to an AHR binding site after DIM or E2+TCDD also had an ERα site, and 60% of the coregulated genes between DIM and E2+TCDD were common. Collectively, our data show that RES and DIM differentially regulate multiple transcriptomic targets via ERα and ERα/AHR coactivity, respectively, which need to be considered to properly interpret their cellular and biological responses. These novel data also suggest that, when both receptors are activated, ERα dominates with preferential recruitment of AHR to ERα target genes.


Subject(s)
Breast Neoplasms , Polychlorinated Dibenzodioxins , Humans , Female , Receptors, Aryl Hydrocarbon/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Resveratrol/pharmacology , MCF-7 Cells , Transcriptome , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Signal Transduction , Polychlorinated Dibenzodioxins/pharmacology , Estradiol/pharmacology , Estradiol/metabolism
12.
J Conserv Dent Endod ; 26(4): 478-483, 2023.
Article in English | MEDLINE | ID: mdl-37705560

ABSTRACT

Successful endodontic treatment relies upon a thorough knowledge of root canal anatomical variations along with proper diagnosis, treatment planning, and clinical expertise. One of the difficult root canal configurations that are frequently encountered commonly in mandibular second molars is C-shaped root canal. Due to the intricate root canal configuration, it is often difficult to negotiate, debride, and obturate such canals leading to failure of root canal treatment. Understanding the anatomical variation and adequate visualization will enable the clinician to manage these cases effectively. Advanced irrigation and obturation techniques help in managing such anomalous canal configurations. This article presents the management of two different C-shaped root canal configurations under dental operating microscope using thermoplasticized obturation techniques.

13.
ACS Biomater Sci Eng ; 9(11): 6058-6083, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37774322

ABSTRACT

Zinc (Zn) and its alloys are considered futuristic biodegradable materials for their acceptable mechanical properties, suitable corrosion rate, and good biocompatibility. In this study, we report newly developed biodegradable Zn-2Cu-xMn/Mg (x = 0, 0.1, and 0.5) alloys, aiming to achieve good mechanical strength with excellent elongation, desirable wear resistance, and suitable corrosion rate. The effect of Mn/Mg addition on the structural, mechanical, wear, and degradation behaviors of the Zn-2Cu-xMn/Mg alloys was thoroughly investigated. Degradation and tribological behaviors of the alloys were explored in the presence of simulated body fluid (SBF), Dulbecco's modified Eagle medium (DMEM), and DMEM with a 10% fetal bovine serum (FBS) solution. Alloy elements and hot rolling improve their mechanical properties significantly due to precipitation hardening, grain refinement, and solid solution strengthening owing to the formation of MnZn13 and Mg2Zn11 phases. Among all the alloys, the Zn-2Cu-0.5Mn alloy achieved the highest ultimate tensile strength (UTS) of ∼405 MPa and yield strength (YS) of ∼293 MPa with an excellent elongation of ∼51%. The corrosion behavior of the alloys as determined by a potentiodynamic polarization study under different solutions follows the sequence Zn-2Cu < Zn-2Cu-0.5Mn < Zn-2Cu-0.1Mn < Zn-2Cu-0.1Mg < Zn-2Cu-0.5Mg. The corrosion rate by immersion testing for 30 and 90 days also follows the same sequence. The corrosion rate in different solutions follows the order SBF > DMEM + 10%FBS > DMEM. The addition of Mn/Mg also improves the wear resistance and slows the wear rate under wet conditions. The bending test results also indicate the highest bending strength of ∼375 MPa for the Zn-2Cu-0.5Mn alloy, among all the alloys. The bending and tensile strengths deteriorate continuously after the immersion for 30 and 90 days in the solution of SBF, DMEM, and DMEM + 10%FBS. Therefore, the Zn-2Cu-xMn/Mg (x = 0.1 and 0.5) alloys can be considered potential biodegradable implant materials.


Subject(s)
Alloys , Biocompatible Materials , Materials Testing , Alloys/chemistry , Zinc , X-Ray Diffraction
14.
Indian J Otolaryngol Head Neck Surg ; 75(3): 2029-2034, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37636606

ABSTRACT

Tinnitus is a symptom of cochlear dysfunction, which can disturb the patient emotionally and physically. As anxiety and tinnitus persist concurrently, certain benzodiazepines have been administered as possible tinnitus treatment options. In addition to pharmacological medications, certain studies have looked at the use of vitamins to treat tinnitus. Intratympanic steroids have been successfully used in various studies as well, for the treatment of tinnitus. A clinical based interventional study was taken up among the patients visiting the ENT OPD of a State Medical College and Hospital. 160 subjects were included in the study by convenient sampling method, taking the inclusion and the exclusion criteria into consideration. Out of them, 80 subjects were given an intratympanic injection of dexamethasone and rest 80 were given oral drugs like alprazolam and vitamin B complex. Among the patients who were treated with intratympanic dexamethasone, significant improvement was seen in 36 of them, with a p value of 0.00 as compared to those who were given oral drugs, in which only 10 showed improvement, with a p value of 0.32. The improvement of the symptoms is significantly related with the duration of the symptoms in our study. Patients presenting with severe SNHL was the commonest presentation but had the least improvement (29.6%). Patients presenting within one year of occurrence of the symptoms had maximum improvement. Intratympanic dexamethasone can be considered as a good alternative for improvement of symptoms of tinnitus.

15.
Cureus ; 15(7): e42206, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37602000

ABSTRACT

BACKGROUND: The established standard treatment for locally advanced head and neck squamous cell carcinoma is concurrent chemoradiotherapy, but the optimum radiotherapy schedule for best disease control and acceptable toxicity is still evolving. Tumor control probability decreases with each day's prolongation of treatment time. Shortening the overall treatment time of radiation by pure accelerated radiotherapy may be a good option. MATERIAL AND METHODS: One hundred and sixty-five patients with histopathologically proven squamous cell carcinoma of the head and neck were included in the study and were assigned into two groups from January 2017 to June 2019. The total dose of 70 Gy was given, 2 Gy/fraction/day. Treatment was given five days a week (conventional radiotherapy) and six days a week (pure accelerated radiotherapy). Both groups received weekly concurrent injections of cisplatin. RESULTS:  The stage (p=0.006) and fractionation of radiation (p=0.018) were the independent factors affecting disease-free survival (DFS). There was a statistically significant difference (p=0.019) in the recurrence of patients in different fractionation schedules. The median DFS was 39 months with a 95% CI of 31.44 - 46.55. One- and three-year DFS was 51% and 8.5% respectively in the five fractions/week schedule arm while 54.5% and 9.5% respectively in the six fractions/week schedule group. CONCLUSION: Pure accelerated radiotherapy is more efficacious in terms of disease control with comparable mildly increased acute side effects.

16.
Zool Anz ; 304: 10-20, 2023 May.
Article in English | MEDLINE | ID: mdl-37484813

ABSTRACT

Female Sinantherina socialis are freshwater, sessile, colonial rotifers that possess two pairs of distinctive glands (warts) located below the corona. Previous studies demonstrated that colonies are unpalatable to many invertebrate and vertebrate predators; those authors suggested that the warts were a possible source of a chemical deterrent to predation. Here we explore wart ultrastructure and cytochemisty to determine whether the warts function as exocrine glands and if their contents display any allomone-like chemistry, respectively. Externally, the warts appear as elevated bulges without pores. Internally, the warts are specialized regions of the integumental syncytium and therefore acellular. The lipid stain Nile Red labels all four warts. Two lipid membrane probes (sphingomyelin and phosphatidylinositol) also bind the warts and may be staining internal secretion vesicle membranes. In fact, wart ultrastructure is defined by hundreds of membrane-bound secretion vesicles packed tightly together. The vesicles are mostly electron-lucent and crowded into a well-defined cytoplasmic space. The cytoplasm also contains abundant ribosomes, rough endoplasmic reticulum, mitochondria, and Golgi, but nuclei are generally positioned peripheral to the packed vesicles. Absence of muscles around the warts or any signs of direct innervation suggests expulsion of gland contents is forced by general body contraction. A single specimen with 'empty' warts implies that secretions are released en masse from all glands simultaneously. The identity of the chemical secretion remains to be determined, but the lack of osmium and uranyl acetate staining suggests a low abundance or absence of phenols, unsaturated lipids, or NH2 and -COOH groups. This absence, combined with the positive Nile Red staining, is interpreted as evidence that vesicles contain saturated fatty acids such as lactones that are unpalatable to predators.

17.
Langmuir ; 39(28): 9773-9784, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37389928

ABSTRACT

Formation of inhomogeneous (in the form of a "coffee ring") or homogeneous deposits accompanies the drying of a particle-laden drop. Invariably, this deposition occurs in a two-dimensional (2D) space (x, y plane) (and might have a finite thickness in z), where the evaporating drop is positioned. Here, we show an interesting extension of this problem: we demonstrate the occurrence of evaporation-mediated particle deposits that span three dimensions (x, y, and z). The extent of the span in this 3rd dimension (z) is comparable to the span in x and y and hence is much larger than the finite thickness (in z) of the 2D deposits. Particle-laden drops are introduced in an uncured and heavier (than the drop) polydimethysiloxane (PDMS) film, enabling the drop to come to the uncured PDMS surface and breach it and get partly exposed to the surrounding air enforcing the onset of evaporation. The subsequent curing of the drop-laden PDMS film ensures that the drop is occupying a three-dimensional (3D) cavity; as a consequence, the evaporation-driven flow field, depending on the particle sizes, leads to a deposition pattern that spans three dimensions. We consider particles of three different sizes: coffee particles (20-50 µm), silver nanoparticles (∼20 nm), and carbon nanotubes (CNTs) (1-2 µm). The coffee particles form a ring-like deposit in the x, y plane, while the much smaller silver nanoparticles (NPs) and CNTs form a 3D deposit that spans in x, y, and z directions. We anticipate that the present finding of the evaporation-triggered three-dimensional (3D) particle deposits will enable unprecedented self-assembly-driven fabrication of various materials, structures, and functional devices as well as patterning and coating in 3D spaces.

18.
Indian J Otolaryngol Head Neck Surg ; 75(2): 1144-1147, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37275089

ABSTRACT

Tuberculosis is a known bacterial infection caused by Mycobacterium tuberculosis complex and has varied clinical presentation. Though pulmonary from is the commonest, extra orbital form is a rare presentation of the same. Here we present a case of extra orbital tuberculosis in a young female, presenting as a painless swelling lateral to the lateral canthus of right eye, along with right preauricular lymphadenopathy. The mass was excised, sent for histopathological examination and culture of M. tuberculosis, which yielded positive results.

19.
J Phys Chem B ; 127(26): 5959-5966, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37348111

ABSTRACT

Nanoconfinement is known to drive phase separation (often denoted as microphase separation) of two highly miscible liquids by subjecting the two liquids to disparate influences. Here, we propose a paradigm shift to this problem: we introduce the idea of "repeatability" in nanoconfinement-driven microphase separation. A drop consisting of two highly miscible liquids (A and B) is made to pass through a nanochannel grafted with a collapsed layer of polymer that is philic to A but phobic to B. Subsequently, a significant number of molecules of liquid A get imbibed into the polymer layer and the polymer layer partially swells, while the molecules of liquid B mostly remain out of the polymeric layer and are carried away, emerging as a drop on the other side of the polymer bilayer. This passage of drop (of liquids A and B) is continued, and each time liquids A and B get separated with liquid A imbibing into the polymer layer and liquid B being carried away with the drop. This scenario, therefore, points to the repeated occurrence of the microphase separation of miscible binary liquid mixtures, enabling the processing of a much larger volume of liquid, given the fact that the presence of a grafted polymer layer continues to provide a dynamically increasing space where liquid A can get localized after being separated from liquid B. We quantify such repeated microphase separation by noting the extent of separation (of liquid A) and extent of recovery (of liquid B) as functions of nanochannel height and number of passes. Interestingly, we establish that this process also leads to a distillation-like behavior (without any heat addition), where the concentration of liquid B (equivalent to the "less volatile" liquid in a standard distillation process) progressively increases inside the drop after its passage through the nanochannel.

20.
Nanotechnology ; 34(36)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37253330

ABSTRACT

A key challenge encountered by printed electronics is that the conductivity of sintered metal nanoparticle (NP) traces is always several times smaller than the bulk metal conductivity. Identifying the relative roles of the voids and the residual polymers on NP surfaces in sintered NP traces, in determining such reduced conductivity, is essential. In this paper, we employ a combination of electron microscopy imaging and detailed simulations to quantify the relative roles of such voids and residual polymers in the conductivity of sintered traces of a commercial (Novacentrix) silver nanoparticle-based ink. High resolution transmission electron microscopy imaging revealed details of the morphology of the inks before and after being sintered at 150 °C. Prior to sintering, NPs were randomly close packed into aggregates with nanometer thick polymer layers in the interstices. The 2D porosity in the aggregates prior to sintering was near 20%. After heating at 150 °C, NPs sintered together into dense aggregates (nanoaggregates or NAgs) with sizes ranging from 100 to 500 nm and the 2D porosity decreased to near 10%. Within the NAgs, the NPs were mostly connected via sintered metal bridges, while the outer surfaces of the NAgs were coated with a nanometer thick layer of polymer. Motivated by these experimental results, we developed a computational model for calculating the effective conductivity of the ink deposit represented by a prototypical NAg consisting of NPs connected by metallic bonds and having a polymer layer on its outer surface placed in a surrounding medium. The calculations reveal that a NAg that is 35%-40% covered by a nanometer thick polymeric layer has a similar conductivity compared to prior experimental measurements. The findings also demonstrate that the conductivity is less influenced by the polymer layer thickness or the absolute value of the NAg dimensions. Most importantly, we are able to infer that the reduced value of the conductivity of the sintered traces is less dependent on the void fraction and is primarily attributed to the incomplete removal of the polymeric material even after sintering.

SELECTION OF CITATIONS
SEARCH DETAIL
...