Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 345
Filter
1.
J Food Sci ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922919

ABSTRACT

Enzymatically converted chicken bile (CB), prepared by converting taurine deoxycholic acid (TCDCA) to taurine ursodeoxycholic acid (TUDCA) in CB, possesses various functional activities. But their nutrient composition and safety assessment have not been fully investigated yet. CB was mainly composed of proteins and steroids. CB did not show genotoxic effects based on Ames test, mammalian erythrocyte micronucleus test, and in vitro mammalian chromosomal aberration test. There were no growth abnormalities or deaths in the acute toxicity test for mice, indicating that CB is nontoxic with an LD50 > 10 g/kg·body weight (BW). Subchronic toxicity test and genotoxicity test were performed based on intake of 0.5 g CB per person daily at expanded doses of 33.3, 100, and 300 times (278, 833, and 2500 mg/kg·BW). The result indicated that CB at 833 mg/kg·BW showed no toxicity on BW, body weight gain, food intake, hematological, serum biochemistry, absolute/relative organ weights, urinalysis, and pathological features of rats in the subchronic toxicity test, while CB at 833 mg/kg·BW induced maternal toxicity with no fetus teratogenicity or embryotoxicity in the teratogenicity test. In conclusion, CB did not show toxic effects and a long-term daily intake of CB at 0.5 g per person is considered safe, but pregnant women should avoid it. These findings could provide a reference for the safe use of CB in functional food.

2.
Int Immunopharmacol ; 138: 112552, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38917521

ABSTRACT

Atopic dermatitis (AD) is a prevalent inflammatory skin condition characterized by a multifaceted pathogenesis, which encompasses immune system signaling dysregulation, compromised skin barrier function, and genetic influencers. Sacha inchi (Plukenetia volubilis L.) oil (SIO) has demonstrated potent anti-inflammatory and antioxidant properties, however, the mechanism underlying the beneficial effects of SIO on AD remains unclear. This study aims to investigate the anti-AD effect of SIO and its possible molecular mechanism in mice with AD. The results demonstrated that SIO significantly reduced the degree of skin lesions and scratching, and improved the skin thickness and mast cell infiltration in AD mice. Furthermore, SIO significantly reduced the levels of immunoglobulin E, histamine and thymic stromal lymphopoietin in serum of AD mice. Additionally, it inhibited the expression of tumor necrosis factor-γ, interferon-γ, interleukin-2, interleukin-4, interleukin 1ß and other inflammatory cytokines in the lesions skin of mice. The Western blotting analysis revealed that SIO exhibited an upregulatory effect on the protein expression of filaggrin and loricrin, while concurrently exerting inhibitory effects on the protein expression and phosphorylation levels of P38, ERK, NF-κB, and IκBα within their respective signaling pathways. Consequently, it can be inferred that SIO exerts a significant anti-atopic dermatitis effect by modulating the P38, ERK, NF-κB, and IκBα signaling pathways. This study contributes to expand the research and development potential of SIO, and provides novel insights and potential therapeutic strategies for AD treatment.

3.
Anal Chem ; 96(23): 9424-9429, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38825761

ABSTRACT

Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/µL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.


Subject(s)
Candida auris , Nucleic Acid Amplification Techniques , Recombinases , Nucleic Acid Amplification Techniques/methods , Humans , Recombinases/metabolism , Candida auris/genetics , Candidiasis/diagnosis , Candidiasis/microbiology , Limit of Detection , DNA, Fungal/genetics , DNA, Fungal/analysis
4.
J Antibiot (Tokyo) ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914795

ABSTRACT

Bacterial infections caused by multidrug-resistant (MDR) gram-negative strains carrying the mobile colistin resistance gene mcr-1 are serious threats to world public health due to the lack of effective treatments. Inhibition of the ATP synthase makes bacteria such as Staphylococcus aureus and Klebsiella pneumoniae more sensitive to polymyxin. This provides new strategies for treating infections caused by polymyxins-resistant bacteria carrying mcr-1. Six mcr-1-positive strains were isolated from clinical samples, and all were identified as Escherichia coli. Here we investigated several ATP synthase inhibitors, N,N'-dicyclohexylcarbodiimide (DCCD), resveratrol, and piceatannol, for their antibacterial effects against the mcr-1-positive strains combined with polymyxin B (POL). Checkerboard assay, time-kill assay, biofilm inhibition and eradication assay indicated the significant synergistic effect of ATP synthase inhibitors/POL combination in vitro. Meanwhile, mouse infection model experiment was also performed, showing a 5 log10 reduction of the pathogen after treatment with the resveratrol/POL combination. Moreover, adding adenosine disodium triphosphate (Na2ATP) could inhibit the antibacterial effect of the ATP synthase inhibitors/POL combination. In conclusion, our study confirmed that inhibition of ATP production could increase the susceptibility of bacteria carrying mcr-1 to polymyxins. This provides a new strategy against polymyxins-resistant bacteria infection.

5.
Environ Int ; 189: 108802, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38875816

ABSTRACT

Organophosphorus compounds (OPs) are widely used as flame retardants (FRs) and plasticizers, yet strategies for comprehensively screening of suspect OPs in environmental samples are still lacking. In this work, a neoteric, robust, and general suspect screening technique was developed to identify novel chemical exposures by use of ultra-high performance liquid chromatography-Q Exactive hybrid quadrupole-Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). We firstly established a suspect chemical database which had 7,922 OPs with 4,686 molecular formulas, and then conducted suspect screening in n = 50 indoor dust samples, n = 76 sediment samples, and n = 111 water samples. By use of scoring criteria such as retention time prediction models, we successfully confirmed five compounds by comparison with their authentic standards, and prioritized three OPs candidates including a nitrogen/fluorine-containing compound, that is dimethyl {1H-indol-3-yl[3-(trifluoromethyl)anilino]methyl} phosphonate (DMITFMAMP). Given that the biodegradation half-life values in water (t1/2,w) of DMITFMAMP calculated by EPI Suite is 180 d, it is considered to be potentially persistent. This strategy shows promising potential in environmental pollution assessment, and can be expected to be widely used in future research.


Subject(s)
Environmental Monitoring , Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Environmental Monitoring/methods , Flame Retardants/analysis , Dust/analysis , Chromatography, High Pressure Liquid , Environmental Pollutants/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods
6.
Sci China Life Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38900236

ABSTRACT

The spreading of cancer cells from the primary tumor site to other parts of the body, known as metastasis, is the leading cause of cancer recurrence and mortality in patients with triple-negative breast cancer (TNBC). Overexpression of epidermal growth factor receptor (EGFR) is observed in approximately 70% of TNBC patients. EGFR is crucial for promoting tumor metastasis and associated with poor prognosis. Therefore, it is vital to identify effective therapeutic strategies targeting EGFR inhibition. Ononin, an isoflavonoid found in various plants, such as clover and soybeans, has been shown to have anticancer properties in several cancers. In the present study, we aimed to investigate the effects of ononin on TNBC lung metastasis and the associated molecular pathways. We used various assays, including cell viability, colony formation, Transwell, wound healing, ELISA, Western blotting, and staining techniques, to achieve this objective. The results demonstrated that ononin effectively suppressed cellular proliferation and induced apoptosis, as evidenced by the cell viability assay, colony formation assay, and expression of apoptosis markers, and reduced the metastatic capabilities of TNBC cells. These effects were achieved through the direct suppression of cell adhesion, invasiveness and motility. Furthermore, in TNBC xenograft lung metastatic models, ononin treatment significantly reduced tumor growth and lung metastasis. Additionally, ononin reversed the epithelial-mesenchymal transition (EMT) by downregulating the expression of EMT markers and matrix metalloproteinases, as confirmed by Western blot analysis. Furthermore, ononin treatment reduced EGFR phosphorylation and suppressed the PI3K, Akt, and mTOR signaling pathways, which was further confirmed using EGFR agonists or inhibitors. Importantly, ononin treatment did not exert any toxic effects on liver or kidney function. In conclusion, our findings suggest that ononin is a safe and potentially therapeutic treatment for TNBC metastasis that targets the EGFR-mediated PI3K/Akt/mTOR pathway. Further studies are warranted to validate its efficacy and explore its potential clinical applications.

7.
Waste Manag ; 184: 92-100, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38805759

ABSTRACT

The increasing application of municipal solid waste incineration (MSWI) emphasises the need for MSWI fly ash (FA) safe treatment. Based on the compositional complementarity of FA from grate furnaces (G-FA) and fluidised bed incinerators (F-FA), we proposed a co-reduction process to treat G-FA and F-FA together for producing vitrified slag and ferroalloys. The clean vitrified slag and Fe-Cr-Ni-Cu alloy were obtained with the mass ratios of 1:9 âˆ¼ 6:4 (G-FA:F-FA) at 1300℃, which is about 300℃ lower than the conventional G-FA vitrification. The metals Zn, Cd, and Pb were mostly volatilised into the flue gas for potential recovery from the secondary FA. The thermodynamic SiO2-Al2O3-CaO ternary system demonstrated that an optimal mass ratio of the two complementary FA types contributes to the system shifting to the low-temperature melting zone. The co-reduction process of G-FA and F-FA could be a promising option for FA beneficial reutilization with environmental advantages.


Subject(s)
Coal Ash , Incineration , Solid Waste , Vitrification , Incineration/methods , Coal Ash/chemistry , Solid Waste/analysis , Refuse Disposal/methods
8.
J Nanobiotechnology ; 22(1): 263, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760755

ABSTRACT

The prevalence of cardiovascular diseases continues to be a challenge for global health, necessitating innovative solutions. The potential of high-density lipoprotein (HDL) mimetic nanotherapeutics in the context of cardiovascular disease and the intricate mechanisms underlying the interactions between monocyte-derived cells and HDL mimetic showing their impact on inflammation, cellular lipid metabolism, and the progression of atherosclerotic plaque. Preclinical studies have demonstrated that HDL mimetic nanotherapeutics can regulate monocyte recruitment and macrophage polarization towards an anti-inflammatory phenotype, suggesting their potential to impede the progression of atherosclerosis. The challenges and opportunities associated with the clinical application of HDL mimetic nanotherapeutics, emphasize the need for additional research to gain a better understanding of the precise molecular pathways and long-term effects of these nanotherapeutics on monocytes and macrophages to maximize their therapeutic efficacy. Furthermore, the use of nanotechnology in the treatment of cardiovascular diseases highlights the potential of nanoparticles for targeted treatments. Moreover, the concept of theranostics combines therapy and diagnosis to create a selective platform for the conversion of traditional therapeutic medications into specialized and customized treatments. The multifaceted contributions of HDL to cardiovascular and metabolic health via highlight its potential to improve plaque stability and avert atherosclerosis-related problems. There is a need for further research to maximize the therapeutic efficacy of HDL mimetic nanotherapeutics and to develop targeted treatment approaches to prevent atherosclerosis. This review provides a comprehensive overview of the potential of nanotherapeutics in the treatment of cardiovascular diseases, emphasizing the need for innovative solutions to address the challenges posed by cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Lipoproteins, HDL , Macrophages , Monocytes , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Lipoproteins, HDL/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Animals , Cardiovascular Diseases/drug therapy , Monocytes/drug effects , Nanoparticles/chemistry , Atherosclerosis/drug therapy , Plaque, Atherosclerotic/drug therapy , Nanomedicine/methods , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology
9.
J Chromatogr Sci ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38757928

ABSTRACT

In this work, a magnetic adsorption material based on metal-organic framework (Fe3O4@ZnAl-LDH@MIL-53(Al)) was synthesized and used as an adsorbent in the process of magnetic solid phase extraction. Then, a high-performance liquid chromatograph was used to quantitatively detect triazole fungicides in samples. In order to verify the successful preparation of the material, a series of characterization analyses were carried out. Besides, the key parameters that may affect the extraction efficiency have been optimized, and under optimal conditions the three triazole fungicides showed good linearity in the range of 10-1000 µg/L (R2 ≥ 0.9796); Limit of detections were ranged from 0.013 to 0.030 µg/mL. Finally, the established method was applied to the detection of triazole fungicides in four fresh juice samples. The results showed that the target analyte was not detected in all the test samples. By detecting the recoveries (73.3-104.3%) and coefficient variation (RSD ≤ 6.8%) of triazole fungicides in fortified samples, it proved that this established method meets the requirements of pesticide residue analysis and showed excellent application potential.

10.
PLoS Biol ; 22(5): e3002621, 2024 May.
Article in English | MEDLINE | ID: mdl-38805565

ABSTRACT

Cholesterol metabolism is vital for multiple cancer progression, while how cholesterol affects lung, a low-cholesterol tissue, for cancer metastasis and the underlying mechanism remain unclear. In this study, we found that metastatic lung adenocarcinoma cells acquire cellular dehydrocholesterol and cholesterol by endogenous cholesterol biosynthesis, instead of uptake upon cholesterol treatment. Besides, we demonstrated that exogenous cholesterol functions as signaling molecule to induce FOXA3, a key transcription factor for lipid metabolism via GLI2. Subsequently, ChIP-seq analysis and molecular studies revealed that FOXA3 transcriptionally activated Hmgcs1, an essential enzyme of cholesterol biosynthesis, to induce endogenous dehydrocholesterol and cholesterol level for membrane composition change and cell migration. Conversely, FOXA3 knockdown or knockout blocked cholesterol biosynthesis and lung adenocarcinoma metastasis in mice. In addition, the potent FOXA3 inhibitor magnolol suppressed metastatic gene programs in lung adenocarcinoma patient-derived organoids (PDOs). Altogether, our findings shed light onto unique cholesterol metabolism and FOXA3 contribution to lung adenocarcinoma metastasis.


Subject(s)
Adenocarcinoma of Lung , Cholesterol , Disease Progression , Hepatocyte Nuclear Factor 3-gamma , Lung Neoplasms , Cholesterol/metabolism , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Animals , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mice , Hepatocyte Nuclear Factor 3-gamma/metabolism , Hepatocyte Nuclear Factor 3-gamma/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement
11.
Front Bioeng Biotechnol ; 12: 1368818, 2024.
Article in English | MEDLINE | ID: mdl-38807650

ABSTRACT

Objective: We aimed to evaluate the efficacy of antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in the treatment of limb-localized osteomyelitis (Cierny-Mader type III) and analyze the causes and risk factors associated with infection recurrence. Methods: Clinical data of 163 patients with localized osteomyelitis of the extremities treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation in Xi'an Honghui Hospital from January 2017 to December 2022 were retrospectively analyzed. All patients were diagnosed with localized osteomyelitis through clinical examination and treated with antibiotic-loaded calcium sulfate combined with autologous iliac bone. Based on the infection recurrence status, the patients were divided into the recurrence group and the non-recurrence group. The clinical data of the two groups were compared using univariate analysis. Subsequently, the distinct datasets were included in the binary logistic regression analysis to determine the risk and protective factors. Results: This study included 163 eligible patients, with an average age of 51.0 years (standard deviation: 14.9). After 12 months of follow-up, 25 patients (15.3%) experienced infection recurrence and were included in the recurrence group; the remaining 138 patients were included in the non-recurrence group. Among the 25 patients with recurrent infection, 20 required reoperation, four received antibiotic treatment alone, and one refused further treatment. Univariate analysis showed that education level, smoking, hypoproteinemia, open injury-related infection, and combined flap surgery were associated with infection recurrence (p < 0.05). Logistic regression analysis showed that open injury-related infection (odds ratio [OR] = 35.698; 95% confidence interval [CI]: 5.997-212.495; p < 0.001) and combined flap surgery (OR = 41.408; 95% CI: 5.806-295.343; p < 0.001) were independent risk factors for infection recurrence. Meanwhile, high education level (OR = 0.009; 95% CI: 0.001-0.061; p < 0.001) was a protective factor for infection recurrence. Conclusion: Antibiotic-loaded calcium sulfate combined with autologous iliac bone transplantation is an effective method for treating limb-localized osteomyelitis. Patients without previous combined flap surgery and non-open injury-related infections have a relatively low probability of recurrence of infection after treatment with this surgical method. Additionally, patients with a history of smoking and hypoproteinemia should pay attention to preventing the recurrence of infection after operation. Providing additional guidance and support, particularly in patients with lower education levels and compliance, could contribute to the reduction of infection recurrence.

12.
Sci Data ; 11(1): 378, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609440

ABSTRACT

Physiological signal monitoring and driver behavior analysis have gained increasing attention in both fundamental research and applied research. This study involved the analysis of driving behavior using multimodal physiological data collected from 35 participants. The data included 59-channel EEG, single-channel ECG, 4-channel EMG, single-channel GSR, and eye movement data obtained via a six-degree-of-freedom driving simulator. We categorized driving behavior into five groups: smooth driving, acceleration, deceleration, lane changing, and turning. Through extensive experiments, we confirmed that both physiological and vehicle data met the requirements. Subsequently, we developed classification models, including linear discriminant analysis (LDA), MMPNet, and EEGNet, to demonstrate the correlation between physiological data and driving behaviors. Notably, we propose a multimodal physiological dataset for analyzing driving behavior(MPDB). The MPDB dataset's scale, accuracy, and multimodality provide unprecedented opportunities for researchers in the autonomous driving field and beyond. With this dataset, we will contribute to the field of traffic psychology and behavior.


Subject(s)
Automobile Driving , Eye Movements , Humans
13.
Front Bioeng Biotechnol ; 12: 1388905, 2024.
Article in English | MEDLINE | ID: mdl-38650748

ABSTRACT

Objective: To compare the effects of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation and clavicular hook plate fixation on early postoperative pain, postoperative shoulder joint function score and shoulder joint mobility in patients with acromioclavicular joint dislocation. Methods: From January 2020 to January 2023, 43 patients with acromioclavicular joint dislocation admitted to Xi 'an Honghui Hospital were included. Among them, 24 patients were treated with the clavicular hook plate technique (Hook Plate,HP) group, and 19 patients were treated with allogeneic tendon coracoclavicular ligament reconstruction combined with the Kirschner wire technique (Allogeneic Tendon, AT) group. The Constant-Murley score of shoulder joint function 6 months after operation, postoperative shoulder joint activity, preoperative and postoperative pain, operation time, intraoperative blood loss and complications were compared between the two groups. Results: All 43 patients were followed up for an average of 9.7 (9-12) months. The intraoperative blood loss in the allogeneic tendon group was less than in the hook plate group. The Constant-Murley shoulder function score was higher than that in the hook plate group 6 months after the operation. The abduction and lifting activity was greater than that in the hook plate group. The visual analogue scale scores at 3 days and 14 days after operation were lower than those in the hook plate group. The difference was statistically significant (p < 0.001). There was 1 case (5.3%) of exudation around the Kirschner needle track in the allogeneic tendon reconstruction group, and 5 cases (20.8%) of complications in the hook plate group, including 1 case of internal fixation stimulation, 2 cases of acromion impingement syndrome, 1 case of acromioclavicular joint osteoarthritis, and 1 case of shoulder joint stiffness. The complication rate of the allogeneic tendon group was lower than that of the hook plate group. Conclusion: The clinical efficacy of allogeneic tendon coracoclavicular ligament reconstruction combined with Kirschner wire fixation in treating acromioclavicular joint dislocation (Rockwood type III-V) is better than hook plate internal fixation. The patients have less early postoperative pain and better recovery of shoulder joint function and shoulder joint mobility.

14.
Electrophoresis ; 45(9-10): 867-876, 2024 May.
Article in English | MEDLINE | ID: mdl-38651903

ABSTRACT

Short tandem repeat analysis is challenging when dealing with unbalanced mixtures in forensic cases due to the presence of stutter peaks and large amplicons. In this research, we propose a novel genetic marker called DIP-TriSNP, which combines deletion/insertion polymorphism (DIP) with tri-allelic single nucleotide polymorphism in less than 230 bp length of human genome. Based on multiplex PCR and SNaPShot, a panel, including 14 autosomal DIP-TriSNPs and one Y chromosomal DIP-SNP, had been developed and applied to genotyping 102 unrelated Han Chinese individuals in Sichuan of China and simulated a mixture study. The panel sensitivity can reach as low as 0.1 ng DNA template, and the minor contributor of DNA can be detected with the highest ratio of 19:1, as indicated by the obtained results. In the Sichuan Han population, the cumulative probability of informative genotypes reached 0.997092, with a combined power of discrimination of 0.999999998801. The panel was estimated to detect more than two alleles in at least one locus in 99.69% of mixtures of the Sichuan Han population. In conclusion, DIP-TriSNPs have shown promising as an innovative DNA marker for identifying the minor contributor in unbalanced DNA mixtures, offering advantages such as short amplifications, increased polymorphism, and heightened sensitivity.


Subject(s)
DNA , Forensic Genetics , Multiplex Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Humans , Multiplex Polymerase Chain Reaction/methods , Forensic Genetics/methods , Genetic Markers/genetics , DNA/genetics , DNA/analysis , China , Asian People/genetics , Genotype , Reproducibility of Results , INDEL Mutation , Microsatellite Repeats/genetics , Male , Genotyping Techniques/methods
15.
Int J Biol Macromol ; 267(Pt 2): 131597, 2024 May.
Article in English | MEDLINE | ID: mdl-38621567

ABSTRACT

The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.


Subject(s)
Cooking , Dioscorea , Starch , Cooking/methods , Starch/chemistry , Dioscorea/chemistry , Digestion , Solubility , Amylopectin/chemistry , Rheology , Water/chemistry
16.
Fa Yi Xue Za Zhi ; 40(1): 20-29, 2024 Feb 25.
Article in English, Chinese | MEDLINE | ID: mdl-38500457

ABSTRACT

OBJECTIVES: To explore the context and hotspot changes of forensic mixed stain research through bibliometric approach. METHODS: The literature of forensic mixed stain included in the core collection of Web of Science database from 2011 to 2022 were collected as the study object, and the annual publication number, countrie (region), institution, journal, keywords, etc. were bibliometrically and visually analyzed using the R-based Bibliometrix 1.1.6 package and VOSviewer 1.6.18 software. RESULTS: A total of 732 articles on forensic mixed stain were included from 2011 to 2022, with the annual number of articles published and the annual citation frequency showing a steady increase year by year. Among the 59 countries (regions) with the most published articles, the United States ranked first with 246 articles, followed by China with 153 articles. The literature came from 104 journals, and the total number of articles published in the top 10 journals was 633. FORENSIC SCI INT GENET ranked first with 307 articles. Visual analysis using VOSviewer software showed that keywords could be divided into four research clusters, namely the genetic marker development group (blue), the mixed stain typing analysis theory group (red), the sequencing analysis group (yellow), and the case sample research group (green). It can be divided into four development stages in terms of different time periods: early development (2011-2013), middle development (2014-2016), rapid development (2017-2020) and latest development (2021-2022). CONCLUSIONS: The number of publications by domestic and foreign scholars in the study of mixed stain in forensic science is showing a relatively stable trend. Machine learning, next generation sequencing and other research have been the hottest topics that have attracted the most attention in recent years, which is expected to further develop the theory of mixed stain typing and sequencing analysis in forensic mixed stain research.


Subject(s)
Bibliometrics , Coloring Agents , China , Forensic Sciences , High-Throughput Nucleotide Sequencing
17.
J Hematol Oncol ; 17(1): 9, 2024 02 24.
Article in English | MEDLINE | ID: mdl-38402237

ABSTRACT

BACKGROUND: Emerging evidences suggest that aberrant metabolites contributes to the immunosuppressive microenvironment that leads to cancer immune evasion. Among tumor immunosuppressive cells, myeloid-derived suppressor cells (MDSCs) are pathologically activated and extremely immunosuppressive, which are closely associated with poor clinical outcomes of cancer patients. However, the correlation between MDSCs mediated immunosuppression and particular cancer metabolism remained elusive. METHODS: Spontaneous lung adenocarcinoma and subcutaneous mouse tumor models, gas chromatography-mass spectrometry (GC-MS) and immunofluorescence assay of patient-derived lung adenocarcinoma tissues, and flow cytometry, RNA sequencing and Western blotting of immune cells, were utilized. RESULTS: Metabolite profiling revealed a significant accumulation of acetic acids in tumor tissues from both patients and mouse model, which contribute to immune suppression and cancer progression significantly through free fatty acid receptor 2 (FFAR2). Furthermore, FFAR2 is highly expressed in the myeloid-derived suppressor cells (MDSCs) from the tumor of lung adenocarcinoma (LUAD) patients which is greatly associated with poor prognosis. Surprisingly, whole or myeloid Ffar2 gene deletion markedly inhibited urethane-induced lung carcinogenesis and syngeneic tumor growth with reduced MDSCs and increased CD8+ T cell infiltration. Mechanistically, FFAR2 deficiency in MDSCs significantly reduced the expression of Arg1 through Gαq/Calcium/PPAR-γ axis, which eliminated T cell dysfunction through relieving L-Arginine consumption in tumor microenvironment. Therefore, replenishment of L-Arginine or inhibition to PPAR-γ restored acetic acids/FFAR2 mediated suppression to T cells significantly. Finally, FFAR2 inhibition overcame resistance to immune checkpoint blockade through enhancing the recruitment and cytotoxicity of tumor-infiltrating T cells. CONCLUSION: Altogether, our results demonstrate that the acetic acids/FFAR2 axis enhances MDSCs mediated immunosuppression through Gαq/calcium/PPAR-γ/Arg1 signaling pathway, thus contributing to cancer progression. Therefore, FFAR2 may serve as a potential new target to eliminate pathologically activated MDSCs and reverse immunosuppressive tumor microenvironment, which has great potential in improving clinical outcomes of cancer immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Mice , Animals , Calcium/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Adenocarcinoma of Lung/metabolism , Arginine/metabolism , Acetates/metabolism , Tumor Microenvironment
18.
Cancer Immunol Immunother ; 73(1): 13, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231412

ABSTRACT

BACKGROUND: Although chimeric antigen receptor T (CAR-T) cells have been proven to be an effective way of treating B cell malignancies, a lot of patients could not benefit from it because of failure in CAR-T cell manufacturing, disease progression, and unaffordable price. The study aimed to explore universal CAR-T cell products to extend the clinical accessibility. METHODS: The antitumor activity of CRISPR/Cas9-edited allogeneic anti-CD19 CAR-T (CAR-T19) cells was assessed in vitro, in animal models, and in patients with relapsed/refractory (R/R) acute B cell lymphoblastic leukemia (B-ALL) or diffuse large B cell lymphoma. RESULTS: B2M-/TRAC- universal CAR-T19 (U-CAR-T19) cells exhibited powerful anti-leukemia abilities both in vitro and in animal models, as did primary CD19+ leukemia cells from leukemia patients. However, expansion, antitumor efficacy, or graft-versus-host-disease (GvHD) was not observed in six patients with R/R B cell malignancies after U-CAR-T19 cell infusion. Accordingly, significant activation of natural killer (NK) cells by U-CAR-T19 cells was proven both clinically and in vitro. HLA-A-/B-/TRAC- novel CAR-T19 (nU-CAR-T19) cells were constructed with similar tumoricidal capacity but resistance to NK cells in vitro. Surprisingly, robust expansion of nU-CAR-T19 cells, along with rapid eradication of CD19+ abnormal B cells, was observed in the peripheral blood and bone marrow of another three patients with R/R B-ALL. The patients achieved complete remission with no detectable minimal residual disease 14 days after the infusion of nU-CAR-T19 cells. Two of the three patients had grade 2 cytokine release syndrome, which were managed using an IL-6 receptor blocker. Most importantly, GvHD was not observed in any patient, suggesting the safety of TRAC-disrupted CAR-T cells generated using the CRISPR/Cas9 method for clinical application. CONCLUSIONS: The nU-CAR-T19 cells showed a strong response in R/R B-ALL. nU-CAR-T19 cells have the potential to be a promising new approach for treating R/R B cell malignancies.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia , Receptors, Chimeric Antigen , Animals , Humans , Receptors, Chimeric Antigen/genetics , Antibodies , Antigens, CD19 , T-Lymphocytes , HLA-A Antigens
19.
Appl Microbiol Biotechnol ; 108(1): 45, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38175238

ABSTRACT

Veillonella spp. are Gram-negative opportunistic pathogens present in the respiratory, digestive, and reproductive tracts of mammals. An abnormal increase in Veillonella relative abundance in the body is closely associated with periodontitis, inflammatory bowel disease, urinary tract infections, and many other diseases. We designed a pair of primers and a probe based on the 16S rRNA gene sequences of Veillonella and conducted real-time quantitative PCR (qPCR) and droplet digital PCR (ddPCR) to quantify the abundance of Veillonella in fecal samples. These two methods were tested for specificity and sensitivity using simulated clinical samples. The sensitivity of qPCR was 100 copies/µL, allowing for the accurate detection of a wide range of Veillonella concentrations from 103 to 108 CFU/mL. The sensitivity of ddPCR was 11.3 copies/µL, only allowing for the accurate detection of Veillonella concentrations from 101 to 104 CFU/mL because of the limited number of droplets generated by ddPCR. ddPCR is therefore more suitable for the detection of low-abundance Veillonella samples. To characterize the validity of the assay system, clinical samples from children with inflammatory bowel disease were collected and analyzed, and the results were verified using isolation methods. We conclude that molecular assays targeting the 16S rRNA gene provides an important tool for the rapid diagnosis of chronic and infectious diseases caused by Veillonella and also supports the isolation and identification of Veillonella for research purposes. KEY POINTS: • With suitable primer sets, the qPCR has a wider detection range than ddPCR. • ddPCR is suitable for the detection of low-abundance samples. • Methods successfully guided the isolation of Veillonella in clinical sample.


Subject(s)
Inflammatory Bowel Diseases , Veillonella , Child , Humans , Biological Assay , Inflammatory Bowel Diseases/diagnosis , Mammals , Real-Time Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics
20.
J Orthop Translat ; 44: 60-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38269355

ABSTRACT

Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) to enhance cartilage repair and regeneration is a promising strategy to alleviate osteoarthritis (OA) progression. Method: The potency of JD-312 in inducing chondrogenic differentiation of MSCs was assessed and verified. The efficacy of JD-312-treated MSCs was evaluated using a Sprague-Dawley rat DMM model. Additionally, the capacity of JD-312 to successfully recruit bone marrow-derived mesenchymal stem cells (BMSCs) for the treatment of OA in vitro was confirmed via intra-articular injection. The repair status of the articular cartilage was analyzed in vivo through histological examination. Result: In this study, we identify JD-312 as a novel non-toxic small molecule that can promote chondrogenic differentiation in human umbilical cord-derived MSCs (hUCMSCs) and human bone marrow MSCS (hBMSCs) in vitro. We also show that transient differentiation of MSCs with JD-312 prior to in vivo administration remarkably improves the regeneration of cartilage and promotes Col2a1 and Acan expression in rat models of DMM, in comparison to kartogenin (KGN) pre-treatment or MSCs alone. Furthermore, direct intra-articular injection of JD-312 in murine model of OA showed reduced loss of articular cartilage and improved pain parameters. Lastly, we identified that the effects of JD-312 are at least in part mediated via upregulation of genes associated with the focal adhesion, PI3K-Akt signaling and the ECM-receptor interaction pathways, and specifically cartilage oligomeric matrix protein (COMP) may play a vital role. Conclusion: Our study demonstrated that JD-312 showed encouraging repair effects for OA in vivo. The translational potential of this article: Together, our findings demonstrate that JD-312 is a promising new therapeutic molecule for cartilage regeneration with clinical potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...