Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Front Vet Sci ; 11: 1408376, 2024.
Article in English | MEDLINE | ID: mdl-38948675

ABSTRACT

Streptococcus agalactiae (S.agalactiae), also known as group B Streptococcus (GBS), is a highly infectious pathogen. Prolonged antibiotic usage leads to significant issues of antibiotic residue and resistance. Chelerythrine (CHE) is a naturally occurring benzophenidine alkaloid and chelerythrine chloride (CHEC) is its hydrochloride form with diverse biological and pharmacological activities. However, the antibacterial mechanism of CHEC against GBS remains unclear. Thus, this study aims to investigate the in vitro antibacterial activity of CHEC on GBS and elucidate its underlying mechanism. The antibacterial effect of CHEC on GBS was assessed using inhibitory zone, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assays, as well as by constructing a time-kill curve. The antibacterial mechanism of CHEC was investigated through techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM), measurement of alkaline phosphatase (AKP) activity, determination of Na+ K+, Ca2+ Mg2+-adenosine triphosphate (ATP) activity, observation of membrane permeability, and analysis of intracellular reactive oxygen species (ROS) and mRNA expression levels of key virulence genes. The results demonstrated that the inhibition zone diameters of CHEC against GBS were 14.32 mm, 12.67 mm, and 10.76 mm at concentrations of 2 mg/mL, 1 mg/mL, and 0.5 mg/mL, respectively. The MIC and MBC values were determined as 256 µg/mL and 512 µg/mL correspondingly. In the time-kill curve, 8 × MIC, 4 × MIC and 2 × MIC CHEC could completely kill GBS within 24 h. SEM and TEM analyses revealed significant morphological alterations in GBS cells treated with CHEC including shrinkage, collapse, and leakage of cellular fluids. Furthermore, the antibacterial mechanism underlying CHEC's efficacy against GBS was attributed to its disruption of cell wall integrity as well as membrane permeability resulting in extracellular release of intracellular ATP, AKP, Na+ K+, Ca2+ Mg2+. Additionally CHEC could increase the ROS production leading to oxidative damage and downregulating mRNA expression levels of key virulence genes in GBS cells. In conclusion, CHEC holds potential as an antimicrobial agent against GBS and further investigations are necessary to elucidate additional molecular mechanisms.

2.
Transl Cancer Res ; 13(5): 2141-2154, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38881912

ABSTRACT

Background: Gastric cancer (GC) remains a formidable challenge in oncology, ranking as a leading cause of cancer mortality globally. This underscores an urgent need for innovative prognostic markers that can revolutionize patient management and outcomes. Recent insights into cancer biology have spotlighted the profound influence of lipid metabolism alterations on tumorigenesis, tumor progression, and the tumor microenvironment. These alterations not only fuel cancer cell growth and proliferation but also play a strategic role in evading immune surveillance and promoting metastasis. The intricate web of lipid metabolism in cancer cells, characterized by deregulated uptake, synthesis, and oxidation of fatty acids (FAs), opens new avenues for targeted therapeutic interventions and prognostic evaluations. Specifically, this study zeroes in on apolipoprotein A-I (APOA1), a key player in lipid metabolism, to unearth its prognostic value in GC. By delving into the role of lipid metabolism-related genes, particularly APOA1, we aim to unveil their potential as groundbreaking biomarkers for GC prognosis. This endeavor not only aims to enhance our understanding of the molecular underpinnings of GC but also to spearhead the development of lipid metabolism-based strategies for improved diagnostic, prognostic, and therapeutic outcomes. Methods: Transcriptomic and clinical data from GC patients and healthy individuals were sourced from The Cancer Genome Atlas (TCGA) database, a comprehensive project that molecularly characterizes over 20,000 primary cancer and matched normal samples across 33 cancer types. Significantly differentially expressed lipid metabolism-related genes were identified using the "limma" package in R. Prognostic genes were selected via univariate Cox regression analysis. Differential gene enrichment analysis was performed using Metascape (http://www.metascape.org). The Human Protein Atlas (HPA, https://www.proteinatlas.org) provided information on APOA1 protein expression in GC and healthy tissues. Immune cell infiltration was analyzed using the CIBERSORT algorithm (http://cibersort.stanford.edu). Results: Significant differences in lipid metabolism-related gene expression were observed between GC and normal tissues, closely linked to FA metabolism, oxidoreductase activity, and sphingolipid metabolism. APOA1 emerged as a potential prognostic biomarker by intersecting prognostic and differentially expressed lipid metabolism genes. Immunohistochemical analysis confirmed APOA1 downregulation in GC. The receiver operating characteristic (ROC) analysis demonstrated its predictive value, with the area under the curve (AUC) being 0.64 [95% confidence interval (CI): 0.52-0.76]. APOA1 expression correlated with immune cell infiltrations. Clinical serum APOA1 results revealed lower levels in GC patients (1.38 vs. 1.26; P<0.05), associated with poor prognosis (hazard ratio =1.50; P<0.001) and clinical characteristics. ROC analysis of serum APOA1 demonstrated good diagnostic ability (AUC: 0.63, 95% CI: 0.61-0.65). Serum APOA1 levels significantly increased after treatment. Conclusions: This study highlights lipid metabolism reprogramming in GC and identifies APOA1 as a potential diagnostic and prognostic biomarker, suggesting its clinical utility in managing GC.

3.
Nat Commun ; 15(1): 4784, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839772

ABSTRACT

Two-dimensional topological insulators hosting the quantum spin Hall effect have application potential in dissipationless electronics. To observe the quantum spin Hall effect at elevated temperatures, a wide band gap is indispensable to efficiently suppress bulk conduction. Yet, most candidate materials exhibit narrow or even negative band gaps. Here, via elegant control of van der Waals epitaxy, we have successfully grown monolayer ZrTe5 on a bilayer graphene/SiC substrate. The epitaxial ZrTe5 monolayer crystalizes in two allotrope isomers with different intralayer alignments of ZrTe3 prisms. Our scanning tunneling microscopy/spectroscopy characterization unveils an intrinsic full band gap as large as 254 meV and one-dimensional edge states localized along the periphery of the ZrTe5 monolayer. First-principles calculations further confirm that the large band gap originates from strong spin-orbit coupling, and the edge states are topologically nontrivial. These findings thus provide a highly desirable material platform for the exploration of the high-temperature quantum spin Hall effect.

4.
Sci Rep ; 14(1): 13489, 2024 06 12.
Article in English | MEDLINE | ID: mdl-38866931

ABSTRACT

Chieh-qua (Benincasa hispida Cogn. var. Chieh-qua How.) fruit development starts post pollination. With the continuous expansion of the fruit, the soluble solid content of the fruit decreases. Because there are no reports on the early development of Chieh-qua fruit, this study compared fruit transcriptomes at 0-, 3-, and 7 day post pollination (dpp). 104,747 unigenes were assembled from clean reads and compared using six public databases for similarity searching. Compared with those of 0 dpp (C), there were differences in the expression of 12,982 and 6541 genes in the fruit tissue at 3 dpp and 7 dpp, respectively. Compared with 3 dpp (B), there were 14,314 differentially expressed genes in the fruit at 7 dpp (A). Based on the analysis of transcription factors, 213 nucleotides in the MYB superfamily were identified; among them, 94 unigenes of the MYB superfamily were differentially expressed at the three stages. In the pairwise comparison of differential expression, eight unigenes (Gene_id: TRINITY_DN32880_c1_g2, TRINITY_DN35142_c2_g2, TRINITY_DN32454_c11_g6, TRINITY_DN34105_c2_g7, TRINITY_DN32758_c3_g3, TRINITY_DN33604_c4_g10, TRINITY_DN34466_c3_g1, TRINITY_DN35924_c3_g2) were homologous to those of MYB59, MYB-GT3b, MYB18, MYB4, MYB108, MYB306, MYB340, and MYB-bHLH13. These unigenes differed significantly among the three stages. Furthermore, MYB59 and MYB18 exhibited higher expression at 7 dpp. MYB4, MYB-GT3b, MYB108, and MYB306 showed the highest expression levels in fruits at 3 dpp. In addition, MYB340 and MYB-bHLH13 showed higher expression levels during the unpollinated stage. MYB59, MYB-GT3b, MYB18, MYB4, MYB108, MYB306, MYB340, and MYB-bHLH13 may play crucial roles in Chieh-qua fruit development, defense, and blossoming. This study provides a basis for further investigation of MYB superfamily genes involved in early fruit expansion in chieh-qua.


Subject(s)
Fruit , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcription Factors , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling/methods , Transcriptome , RNA-Seq/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Molecular Sequence Annotation
5.
Hortic Res ; 11(5): uhae094, 2024 May.
Article in English | MEDLINE | ID: mdl-38799130

ABSTRACT

In plant-pathogen interactions, pathogens display tissue specificity, infecting and causing disease in particular tissues. However, the involvement of microRNAs/microRNA-like RNAs (miRNAs/milRNAs) in tissue-specific regulation during plant-pathogen interactions remains largely unexplored. This study investigates the differential expression of miRNAs/milRNAs, as well as their corresponding target genes, in interactions between Valsa mali (Vm) and different apple tissues. The results demonstrated that both apple miRNAs and Vm milRNAs exhibited distinct expression profiles when Vm infected bark and leaves, with functionally diverse corresponding target genes. Furthermore, one apple miRNA (Mdo-miR482a) and one Vm milRNA (Vm-milR57) were identified as exhibiting tissue-specific expression in interactions between Vm and apple bark or leaves. Mdo-miR482a was exclusively up-regulated in response to Vm infection in bark and target a nucleotide-binding leucine-rich repeat (NLR) gene of apple. When Mdo-miR482a was transiently over-expressed or silenced, the resistance was significantly reduced or improved. Similarly, transient expression of the NLR gene also showed an increase in resistance. Vm-milR57 could target two essential pathogenicity-related genes of Vm. During Vm infection in bark, the expression of Vm-milR57 was down-regulated to enhance the expression of the corresponding target gene to improve the pathogenicity. The study is the first to reveal tissue-specific characteristics of apple miRNAs and Vm milRNAs in interactions between Vm and different apple tissues, providing new insights into adaptive regulation in tissue-specific interactions between plants and fungi.

6.
Article in English | MEDLINE | ID: mdl-38625053

ABSTRACT

OBJECTIVE/MAIN OUTCOME: To study the expression of OX40 on T follicular helper (Tfh) cells and the ligand OX40L on antigen-presenting cells (APCs) in peripheral blood of patients with Type 1 diabetes mellitus (T1DM) and the role of OX40 signaling in promoting Tfh cells to assist B-cell differentiation. DESIGN: Cross-sectional study. SETTING: Endocrinology department of a university hospital. PARTICIPANTS: Twenty-five patients with T1DM and 35 with newly diagnosed T2DM from January 2021-December 2021 (39 males, 21 females; mean age: 31.0 ± 4.5, range: 19-46 years). INTERVENTIONS: None. METHODS: The peripheral blood proportion of CD4+CD25-CD127+CXCR5+PD1+ Tfh cells in patients with T1DM or T2DM and the OX40L expression in CD14+ monocytes and CD19+ B cells were analyzed by flow cytometry. The OX40 signal effect on Tfh-cell function was analyzed by co-incubating B cells with Tfh cells under different conditions. Flow cytometry detected the ratio of CD19-CD138+ plasmacytes. RESULTS: The Tfh cells ratio and intracellular IL-21 expression in peripheral blood was significantly higher in patients with T1DM than with T2DM, and the OX40 expression in peripheral Tfh cells and OX40L expression in APC were significantly higher in T1DM. After adding OX40L protein, the CD19-CD138+-plasmacytes percentage was significantly increased and higher in T1DM. Blocking of anti-OX40L monoclonal antibodies significantly reduced the plasmacytes ratio. CONCLUSIONS: The peripheral Tfh cells proportion increased and the OX40 expression in peripheral Tfh cells was upregulated in patients with T1DM versus patients with T2DM. OX40/OX40L signaling enhanced the Tfh-cell function to assist B-cell differentiation, which may contribute to the pathogenesis of T1DM.

7.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38513075

ABSTRACT

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

8.
Mol Carcinog ; 63(5): 962-976, 2024 May.
Article in English | MEDLINE | ID: mdl-38411298

ABSTRACT

It is well known that 5-methylcytosine (m5C) is involved in variety of crucial biological processes in cancers. However, its biological roles in lung adenocarcinoma (LAUD) remain to be determined. The LUAD samples were used to assess the clinical value of NOP2/Sun RNA Methyltransferase 2 (NSUN2). Dot blot was used to determine global m5C levels. ChIP and dual-luciferase assays were performed to investigate the MYC-associated zinc finger protein (MAZ)-binding sites in NSUN2 promoter. RNA-seq was used to explore the downstream molecular mechanisms of NSUN2. Dual luciferase reporter assay, m5C-RIP-qPCR, and mRNA stability assay were conducted to explore the effect of NSUN2-depletion on target genes. Cell viability, transwell, and xenograft mouse model were designed to demonstrate the characteristic of NSUN2 in promoting LUAD progression. The m5C methyltransferase NSUN2 was highly expressed and caused elevated m5C methylation in LUAD samples. Mechanistically, MAZ positively regulated the transcription of NSUN2 and was related to poor survival of LUAD patients. Silencing NSUN2 decreased the global m5C levels, suppressed proliferation, migration and invasion, and inhibited activation of PI3K-AKT signaling in A549 and SPAC-1 cells. Phosphoinositide-3-Kinase Regulatory Subunit 2 (PIK3R2) was upregulated by NSUN2-mediated m5C methylation by enhancing its mRNA stabilization and activated the phosphorylation of the PI3K-AKT signaling. The present study explored the underlying mechanism and biological function of NSUN2-meditated m5C RNA methylation in LUAD. NSUN2 was discovered to facilitate the malignancy progression of LUAD through regulating m5C modifications to stabilize PIK3R2 activating the PI3K-AKT signaling, suggesting that NSUN2 could be a novel biomarker and promising therapeutic target for LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Methyltransferases , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Cell Proliferation/genetics , Disease Models, Animal , Luciferases , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , RNA Methylation/genetics , 5-Methylcytosine/metabolism
9.
Theranostics ; 14(3): 1101-1125, 2024.
Article in English | MEDLINE | ID: mdl-38250041

ABSTRACT

Cancer remains a severe public health burden worldwide. One of the challenges hampering effective cancer therapy is that the existing cancer models hardly recapitulate the tumor microenvironment of human patients. Over the past decade, tumor organoids have emerged as an in vitro 3D tumor model to mimic the pathophysiological characteristics of parental tumors. Various techniques have been developed to construct tumor organoids, such as matrix-based methods, hanging drop, spinner or rotating flask, nonadhesive surface, organ-on-a-chip, 3D bioprinting, and genetic engineering. This review elaborated on cell components and fabrication methods for establishing tumor organoid models. Furthermore, we discussed the application of tumor organoids to cancer modeling, basic cancer research, and anticancer therapy. Finally, we discussed current limitations and future directions in employing tumor organoids for more extensive applications.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Genetic Engineering , Organoids , Tumor Microenvironment
10.
ACS Appl Mater Interfaces ; 16(6): 8140-8150, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38295314

ABSTRACT

Adhesives have received extensive attention in flexible bioelectronics, wearable electronic medical devices, and biofuel cells. However, it is a challenge to achieve late regulation of performance once polymer-based gels are formed. Here, a double-network organogel composed of a hydrophilic and hydrophobic polymer network and a polyamide acid network was successfully prepared. In diverse liquid environments (including isopropyl alcohol, glycerol, epichlorohydrin, n-propanol, dichloromethane, triethanolamine, ethanol absolute, hydrogen peroxide, and ethyl acetate), the organogel adhesive demonstrated remarkable properties. It exhibits a strong tensile strength of 200 kPa, a high fracture strain reaching 560%, and an impressive adhesion strength of 38 kPa. In addition, the organogel demonstrates exceptional adhesive properties toward polytetrafluoroethylene, plastics, metals, rubber, and glass. Note that the organogel could also regulate adhesive and tough performance by thermally triggering a cyclization reaction even after the organogel has been formed. The strategy provides a new idea for designing soft materials with post-tunability.

11.
J Diabetes ; 16(1): e13465, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37646268

ABSTRACT

BACKGROUND AND AIMS: The traditional treatment of diabetic wounds is unsatisfactory. Exosomes isolated from bone marrow mesenchymal stem cells (BMSCs) promote the healing of diabetic wounds. However, whether the exosomes secreted by interferon (IFN)-γ-pretreated BMSCs have an enhanced therapeutic effect on diabetic wound healing and the relevant mechanisms remain unclear. METHODS: In this study, we isolated exosomes from the corresponding supernatants of BMSCs with (IExos) or without IFN-γ treatment (NExos). Human umbilical vein endothelial cells (HUVECs) were used to investigate the proliferation, migration, and tube formation under different treatments in vitro. Diabetic mice were induced by intraperitoneal administration of streptozotocin, and a circular full-thickness dermal defect was then made on the back of each mouse, followed by a multisite subcutaneous injection of phosphate buffered saline or exosomes. Hematoxylin-eosin (H&E) staining, Masson's trichrome staining, and histological analysis were performed to assess the speed and quality of wound healing. RESULTS: NExos treatment accelerated the healing of diabetic wounds by promoting angiogenesis in vivo and in vitro, and IExos exhibited superior therapeutic efficiency. MicroRNA (miR)-126-3p was significantly increased in IExos, and exosomal miR-126-3p promoted angiogenesis and diabetic wound healing via its transfer to HUVECs. miR-126-3p regulates SPRED1 by directly targeting the 3'-UTR. Mechanistically, IFN-γ-pretreated BMSCs secreted miR-126-3p-enriched exosomes, which enhanced the function of HUVECs and promoted angiogenesis via the SPRED1/Ras/Erk pathway. CONCLUSION: Exosomal miR-126-3p secreted from IFN-γ-pretreated BMSCs exhibited higher therapeutic efficacy than NExos in diabetic wound healing by promoting angiogenesis via the SPRED1/Ras/Erk axis.


Subject(s)
Diabetes Mellitus, Experimental , Exosomes , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , Diabetes Mellitus, Experimental/pathology , Exosomes/genetics , Exosomes/metabolism , Wound Healing , Human Umbilical Vein Endothelial Cells/metabolism , Cell Proliferation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/pharmacology
12.
Trends Biochem Sci ; 49(3): 247-256, 2024 03.
Article in English | MEDLINE | ID: mdl-38072749

ABSTRACT

In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases. In this review, we summarize insights that have emerged from recent structural studies of Pol IV, Pol V, and RDR2 and discuss their structural features critical for efficient ncRNA production in RdDM.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , DNA, Plant/metabolism , Arabidopsis/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , RNA, Untranslated/genetics , Plants/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Arabidopsis Proteins/metabolism , RNA, Small Interfering/metabolism
13.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5172-5180, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114107

ABSTRACT

Excessive application of chemical fertilizer has caused many problems in Angelica dahurica var. formosana planting, such as yield decline and quality degradation. In order to promote the green cultivation mode of A. dahurica var. formosana and explore rhizosphere fungus resources, the rhizosphere fungi with nitrogen fixation, phosphorus solubilization, potassium solubilization, iron-producing carrier, and IAA-producing properties were isolated and screened in the rhizosphere of A. dahurica var. formosana from the genuine and non-genuine areas, respectively. The strains were identified comprehensively in light of the morphological characteristics and ITS rDNA sequences, and the growth-promoting effect of the screened strains was verified by pot experiment. The results showed that 37 strains of growth-promoting fungi were isolated and screened from the rhizosphere of A. dahurica var. formosana, mostly belonging to Fusarium. The cultured rhizosphere growth-promoting fungi of A. dahurica var. formosana were more abundant and diverse in the genuine producing areas than in the non-genuine producing areas. Among all strains, Aspergillus niger ZJ-17 had the strongest growth promotion potential. Under the condition of no fertilization outdoors, ZJ-17 inoculation significantly promoted the growth, yield, and accumulation of effective components of A. dahurica var. formosana planted in the soil of genuine and non-genuine producing areas, with yield increases of 73.59% and 37.84%, respectively. To a certain extent, it alleviated the restriction without additional fertilization on the growth of A. dahurica var. formosana. Therefore, A. niger ZJ-17 has great application prospects in increasing yield and quality of A. dahurica var. formosana and reducing fertilizer application and can be actually applied in promoting the growth of A. dahurica var. formosana and producing biofertilizer.


Subject(s)
Angelica , Fertilizers , Rhizosphere , Angelica/chemistry , Fungi/genetics , Phosphorus
14.
Environ Sci Pollut Res Int ; 30(51): 110417-110430, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37783997

ABSTRACT

Separation materials have received increasing attention given their broad applications in the management of environmental pollution. It is desired to balance the contradiction between high separation efficiency and selectivity of separation materials. The integration of ball-milled bone chars with electrospun membranes might achieve this balance. In this study, electrospun cellulose/chitosan/ball-milled bone char (CL/CS/MB) membranes were by well-dispersing ball-milled bone chars with nanoscale size (98.9-167.5 nm) and developed porosity (40.2-373.1 m2/g) in the electrospinning solvent. The synergistic integration of distributed MBs (5.4-31.5 wt.% of loading hydroxyapatite on the membrane matrix) allowed the efficient sorption of Pb(II) with fast kinetics (20.0 min), excellent capacity (219.9 mg/g at pH 5.0, T 298 K), and favorable selectivity coefficients (2.76-6.79). The formation of minerals was dominant for the selective sorption of Pb(II) by combining the spectral analysis and quantitative determination. The surface complexation with O-/reductive N-species, the cation exchange with inorganic Ca2+, the electrostatic attraction with deprotonated O-, and the cation-π coordination with the aromatic carbon via the π-electrons should be not ignored for the capture of Pb(II). This work demonstrated the feasibility of electrospun CL/CS/MB membranes as a promising candidate for the remediation of aquatic pollutants.


Subject(s)
Chitosan , Water Pollutants, Chemical , Adsorption , Lead , Minerals , Water , Kinetics , Cations , Water Pollutants, Chemical/analysis
15.
Article in English | MEDLINE | ID: mdl-37718529

ABSTRACT

BACKGROUND: In recent years, many semiconductor materials with unique band structures have been used as Pt counter electrode (CE) substitutes for dye-sensitized solar cells (DSSCs), which makes the photoelectric properties of DSSCs possible to be modulated by electric field, magnetic field, and light field. In this work, La0.67(Ca Ba)0.33MnO3 (LCBMO) thin film is employed to act as CE in DSSCs. METHOD: The experimental results indicate that short-circuit current density and photoelectric conversion efficiency present better stability when applying an external magnetic field to the DSSCs. Furthermore, both the exchange current density (J0) and limit diffusion current density (Jlim) are largely enhanced by an external magnetic field. J0 increases from -0.51 mA•cm-2 to -0.65 mA•cm-2, and Jlim increases from 0.2 mA•cm-2 to 0.3 mA•cm-2 when applying a magnetic field of 0.25 T. RESULT: The fitting results of the impedance test verify that the magnetic field reduces the value of Rct. CONCLUSION: Both magnetic-field enhancing catalytic activity and CMR effect jointly promote the increase of photocurrent and finally improve the photovoltaic effect in DSSCs.

16.
Pharmaceutics ; 15(9)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765260

ABSTRACT

The growing significance of messenger RNA (mRNA) therapeutics in diverse medical applications, such as cancer, infectious diseases, and genetic disorders, highlighted the need for efficient and safe delivery systems. Lipid nanoparticles (LNPs) have shown great promise for mRNA delivery, but challenges such as toxicity and immunogenicity still remain to be addressed. In this study, we aimed to compare the performance of polyplex nanomicelles, our original cationic polymer-based carrier, and LNPs in various aspects, including delivery efficiency, organ toxicity, muscle damage, immune reaction, and pain. Our results showed that nanomicelles (PEG-PAsp(DET)) and LNPs (SM-102) exhibited distinct characteristics, with the former demonstrating relatively sustained protein production and reduced inflammation, making them suitable for therapeutic purposes. On the other hand, LNPs displayed desirable properties for vaccines, such as rapid mRNA expression and potent immune response. Taken together, these results suggest the different potentials of nanomicelles and LNPs, supporting further optimization of mRNA delivery systems tailored for specific purposes.

18.
Virus Genes ; 59(6): 801-816, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37644346

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a significant public health concern worldwide. Several metabolic processes regulate HBV DNA replication, including autophagy and lipid metabolism. In this study, we clarified the effect of lipids on HBV replication and elucidated possible mechanisms. We discovered that lipid metabolic gene expression levels were negatively correlated with the HBV DNA in plasma. Our data showed that fatty acid stimulation significantly reduced HBV DNA, hepatitis B surface antigen (HBsAg), and hepatitis B e antigen (HBeAg) levels in HepG2.2.15 cells, which are human hepatoma cell cultures transfected with HBV DNA. The Stearoyl coenzyme A desaturase 1 (SCD1)-autophagy pathway has also been implicated in inhibiting HBV replication by fatty acids stimulation. SCD1 knockdown deregulates the inhibitory effect of fatty acids on HBV by enhancing autophagy. When 3 methyladenine (3MA) was added, the inhibitory effects of specific autophagy inhibitors eliminated the positive effects of SCD1 knockdown on HBV replication. Our results indicate that SCD1 participates in the regulation of inhibition of HBV replication by fatty acids stimulation through regulating autophagy.


Subject(s)
Hepatitis B, Chronic , Liver Neoplasms , Humans , Hepatitis B virus , DNA, Viral/genetics , DNA, Viral/metabolism , Hepatitis B Surface Antigens , Hepatitis B e Antigens , Hep G2 Cells , Fatty Acids/metabolism , Fatty Acids/pharmacology , Autophagy/genetics , Virus Replication , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
19.
Sci Rep ; 13(1): 12348, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37524812

ABSTRACT

A smooth and secure spatial path planning algorithm that integrates the improved ant colony optimization with the corrective connected spatial search strategy is proposed, aiming at heavy heading switching pressure of autonomous underwater vehicles sailing in complex marine environment. On the one hand, to overcome the low-dimensional search domain and inaccurate spatial communication information in traditional spatial path planning, the spatial connectivity adjacency domain search strategy is designed based on grid environment model. On the other hand, to alleviate heading switching pressure due to large path steering angles and redundant path turning points, the heuristic functions and pheromone update criterion based on ant colony optimization are introduced to improve the solution quality of smooth paths. The simulation results show that the space search strategy can improve the success probability of safe path planning without reducing the scope of explorable free space. Additionally, the simulations demonstrate that the improved ant colony optimization using the spatial search strategy can guarantee the shortest path with lowest tortuous degree and fewest turning times in the same grid environment.

20.
J Am Chem Soc ; 145(27): 14686-14696, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37392183

ABSTRACT

The enantioconvergent C(sp3)-N cross-coupling of racemic alkyl halides with (hetero)aromatic amines represents an ideal means to afford enantioenriched N-alkyl (hetero)aromatic amines yet has remained unexplored due to the catalyst poisoning specifically for strong-coordinating heteroaromatic amines. Here, we demonstrate a copper-catalyzed enantioconvergent radical C(sp3)-N cross-coupling of activated racemic alkyl halides with (hetero)aromatic amines under ambient conditions. The key to success is the judicious selection of appropriate multidentate anionic ligands through readily fine-tuning both electronic and steric properties for the formation of a stable and rigid chelating Cu complex. Thus, this kind of ligand could not only enhance the reducing capability of a copper catalyst to provide an enantioconvergent radical pathway but also avoid the coordination with other coordinating heteroatoms, thereby overcoming catalyst poisoning and/or chiral ligand displacement. This protocol covers a wide range of coupling partners (89 examples for activated racemic secondary/tertiary alkyl bromides/chlorides and (hetero)aromatic amines) with high functional group compatibility. When allied with follow-up transformations, it provides a highly flexible platform to access synthetically useful enantioenriched amine building blocks.

SELECTION OF CITATIONS
SEARCH DETAIL
...