Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Environ Sci Pollut Res Int ; 31(22): 32519-32537, 2024 May.
Article in English | MEDLINE | ID: mdl-38658508

ABSTRACT

The transformation of solid wastes from industrial production into effective adsorbents could significantly contribute to wastewater treatment. In this study, after acidizing and burning soft scale (SS) from coal gasification system, two magnetic adsorbents (mag-ASS and mag-BASS) were prepared via the combination of magnetite with ultrasonic, respectively. The treatment effects of mag-ASS and mag-BASS were then investigated for simulated wastewater containing macromolecular organic matter [i.e., methylene blue (MB)] and Ca2+. The results indicated that the pseudo second order kinetic, Elovich, Freundlich, Langmuir and Temkin model could well describe the adsorption behavior of MB and Ca2+ onto mag-ASS and mag-BASS. The maximum adsorption capacities of mag-ASS for MB and mag-BASS for Ca2+ were 600.53 mg/g and 102.54 mg/g, respectively. Surprisingly, the adsorption abilities of mag-ASS for MB and mag-BASS for Ca2+ show significantly higher than the others. The adsorption mechanisms of MB mainly included electrostatic interaction, π-π conjugate interaction and cation exchange, while those of Ca2+ were mainly electrostatic interaction and cation exchange. The diffusion of MB and Ca2+ onto the magnetic adsorbents might be controlled by the combined effects of intraparticle and liquid film diffusion. There was no significant reduction in adsorption capacity after 8 cycles of adsorption and desorption, indicating that SS-based magnetic adsorbents had good recyclability and stability. Moreover, the removal efficiency of mag-BASS for total hardness and total organic carbon in real coal gasification gray water (CGGW) was 82.60 and 64.10%, respectively. The treatment of CGGW and the resource of wastes would significantly promote the reasonable disposal of coal gasification scales.


Subject(s)
Calcium , Coal , Methylene Blue , Methylene Blue/chemistry , Adsorption , Calcium/chemistry , Wastewater/chemistry , Kinetics , Water Pollutants, Chemical/chemistry , Water Purification/methods
2.
Environ Sci Pollut Res Int ; 31(19): 28153-28165, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528219

ABSTRACT

The re-mobilization risks of potentially toxic elements (PTEs) during stabilization deserve to be considered. In this study, artificial simulation evaluation methods based on the environmental stress of freeze-thaw (F-T), acidification and variable pH were conducted to assess the long-term effectiveness of PTEs stabilized by MgO in Pb/Zn smelter contaminated soils. Among common stabilizing materials, MgO was considered as the best remediation material, since PTEs bioavailability reduced by 55.48% for As, 19.58% for Cd, 10.57% for Cu, and 26.33% for Mn, respectively. The stabilization effects of PTEs by MgO were best at the dosage of 5 wt%, but these studied PTEs would re-mobilize after 30 times F-T cycles. Acid and base buffering capacity results indicated that the basicity of contaminated soils with MgO treatment reduced under F-T action, and the leached PTEs concentrations would exceed the safety limits of surface water quality standard in China (GB3838-2002) after acidification of 2325 years. No significant changes were found in the pH-dependent patterns of PTEs before and after F-T cycles. However, after F-T cycles, the leaching concentrations of PTEs increased due to the destruction of soil microstructure and the functionality of hydration products formed by MgO, as indicated by scanning electron microscopy (SEM) coupled with energydispersive Xray spectroscopy (EDS) results. Hence, these findings would provide beneficial references for soil remediation assessments of contaminated soils under multi-environmental stress.


Subject(s)
Lead , Magnesium Oxide , Soil Pollutants , Soil , Zinc , Soil Pollutants/chemistry , Lead/chemistry , Soil/chemistry , Magnesium Oxide/chemistry , Zinc/chemistry , China , Environmental Restoration and Remediation/methods
3.
Mol Cell Biochem ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38158493

ABSTRACT

Hypertrophic scar (HS) formation is a cutaneous fibroproliferative disease that occurs after skin injuries and results in severe functional and esthetic disability. To date, few drugs have shown satisfactory outcomes for the treatment of HS formation. Transforming growth factor-beta (TGF-ß)/Notch interaction via small mothers against decapentaplegic 3 (Smad3) could facilitate HS formation; therefore, targeting TGF-ß/ Notch interaction via Smad3 is a potential therapeutic strategy to attenuate HS formation. In addition, optic atrophy 1 (OPA1)-mediated mitochondrial fusion contributes to fibroblast proliferation, and TGF-ß/Smad3 axis and the Notch1 pathway facilitate OPA1-mediated mitochondrial fusion. Thus, the aim of this study was to investigate whether drugs targeting TGF-ß/Notch interaction via Smad3 suppressed fibroblast proliferation to attenuate HS formation through OPA1-mediated mitochondrial fusion. We found that the TGF-ß pathway, Notch pathway, and TGF-ß/Notch interaction via Smad3 were inhibited by pirfenidone, the gamma- secretase inhibitor DAPT, and SIS3 in human keloid fibroblasts (HKF) and an HS rat model, respectively. Protein interaction was detected by co-immunoprecipitation, and mitochondrial morphology was determined by electron microscopy. Our results indicated that pirfenidone, DAPT, and SIS3 suppressed the proliferation of HKFs and attenuated HS formation in the HS rat model by inhibiting TGF-ß/Notch interaction via Smad3. Moreover, pirfenidone, DAPT, and SIS3 hindered OPA1-mediated mitochondrial fusion through inhibiting TGF-ß/Notch interaction, thereby suppressing the proliferation of HS fibroblasts and HS formation. In summary, these findings investigating the effects of drugs targeting TGF-ß/Notch interaction on HS formation might lead to novel drugs for the treatment of HS formation.

4.
Environ Int ; 178: 108079, 2023 08.
Article in English | MEDLINE | ID: mdl-37453209

ABSTRACT

BACKGROUND: Children and consumers are exposed to increasingly complex mixtures of known and as-yet-unknown toxic chemicals from toys and products. However traditional chemical analysis methods only evaluate a small number of chemicals at a time thereby restricting consumer awareness of the full range of potentially harmful chemicals in products. METHODS: We used high-throughput effect-based non-animal methods to investigate exposures to complex chemical mixtures of several kinds of brominated flame retardants (BFRs) for their dioxin- and thyroid hormone-like activities in various kinds of consumer products and toys from 26 different countries, on four continents (Africa, America, Asia and Europe) in combination with chemical analysis of various polybrominated flame retardants (BFRs) and their impurities (such as polyhalogenated PCDD/Fs and PBDD/Fs). RESULTS: We found high levels of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in toys and now, for the first time, also in consumer products that are manufactured from black plastics containing certain brominated flame retardants (BFRs). The presence of PBDD/PBDFs as well as other BFRs in various black plastic materials from additional countries as well as additional kinds of consumer products as confirmed by effect-based in vitro reporter gene DR CALUX and TTR-TRß CALUX assays as well as congener-specific chemical analysis. We compared total Toxicity Equivalent (TEQ) levels of PBDD/F-TEQs analysed by chemical analysis to by CALUX bioassay measured Biological equivalence (BEQ) concentrations (for further info see at ISO 23196, ISO, 2022). In the case of TBBPA, both chemical and TTR-TRß CALUX analysis measure direct the amount of TBBPA. Finally, the daily ingestion of 2,3,7,8-TCDD equivalents from PBDD/Fs-contaminated plastic toys by child mouthing habits have been related to our earlier study (Budin et al., 2020). CONCLUSIONS: Interaction of children with such contaminated plastics may significantly contribute to the daily uptake of dioxin- and thyroid hormone transport disrupting-like compounds. Effect-based bioassays for dioxin- and thyroid hormone-like activities are relevant to pick-out such complex mixtures of known and yet unknown (and therefore not regulated) substances for safer and more sustainable plastics. Low POPs Content Levels and other mechanisms set under the Basel and Stockholm Conventions are set far too high to prevent a significant flow of BFRs and PBDD/Fs into consumer products.


Subject(s)
Dioxins , Flame Retardants , Polychlorinated Dibenzodioxins , Child , Humans , Polychlorinated Dibenzodioxins/analysis , Dioxins/analysis , Dibenzofurans/analysis , Flame Retardants/analysis , Complex Mixtures , Plastics/chemistry , Thyroid Hormones
5.
J Hazard Mater ; 457: 131698, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37270962

ABSTRACT

Chromium (Cr) is a highly toxic element, which is widely present in environment due to industrial activities. One of most applicable technique to clean up Cr pollution is chemical reduction. However, the Cr(VI) concentration in soil increases again after remediation, and meanwhile the yellow soil would appear, which is commonly called as "yellowing" phenomenon. To date, the reason behind the phenomenon has been disputed for decades. This study aimed to introduce the possible "yellowing" mechanism and the influencing factors based on the extensive literature review. In this work, the concept of "yellowing" phenomenon was explained, and the most potential reasons include the reoxidation of manganese (Mn) oxides and mass transfer were summarized. Based on the reported finding and results, the large area of "yellowing" is likely to be caused by the re-migration of Cr(VI), since it could not sufficiently contact with the reductant under the effects of the mass transfer. In addition, other driving factors also control the occurrence of "yellowing" phenomenon. This review provides valuable reference for the academic peers participating in the Cr-contaminated sites remediation.

6.
Biomed Pharmacother ; 161: 114517, 2023 May.
Article in English | MEDLINE | ID: mdl-36913893

ABSTRACT

BACKGROUND: Platelet lysate (PL), a novel platelet derivative, has been widely used in regenerative medicine and is a potential therapy for improving hair growth. It is necessary to fully clarify the potential mechanism and evaluate preliminary clinical effect of PL on hair growth. METHODS: We used the C57BL/6 model, organ-cultured hair follicles, and RNA-seq analysis to explore the mechanisms of PL regulating hair growth. Then, we performed a randomized, controlled, double-blind study of 107 AGA patients to verify the therapeutic efficacy of PL. RESULTS: The results confirmed that PL improved hair growth and accelerated hair cycling in mice. Organ-cultured hair follicle evaluation confirmed that PL prolonged anagen remarkably and down-regulated IL-6, C-FOS, and p-STAT5a. Clinically, diameter, hair counts, absolute anagen counts and changes from baseline in the PL group showed a significant improvement at 6 months. CONCLUSIONS: We elucidated the specific molecular mechanism of PL action on hair growth and proved equal changes in hair follicle performance after PL vs PRP in AGA patients. This study provided novel knowledge of PL, making it ideal for AGA.


Subject(s)
Alopecia , Hair Follicle , Platelet-Rich Plasma , Animals , Mice , Alopecia/therapy , Hair , Mice, Inbred C57BL
7.
Geroscience ; 45(2): 1215-1230, 2023 04.
Article in English | MEDLINE | ID: mdl-35612775

ABSTRACT

As one of the earliest and most visible phenomenon of aging, gray hair makes it a unique model system for investigating the mechanism of aging. Ionizing radiation successfully induces gray hair in mice, and also provides a venue to establish an organ-cultured human gray hair model. To establish a suitable organ-cultured human gray HF model by IR, which imitates gray hair in the elderly, and to explore the mechanisms behind the model. By detecting growth parameters, melanotic and senescence markers of the model, we found that the model of 5 Gy accords best with features of elderly gray hair. Then, we investigated the formation mechanisms of the model by RNA-sequencing. We demonstrated that the model of organ-cultured gray HFs after 5 Gy irradiation is closest to the older gray HFs. Moreover, the 5 Gy inhibited the expression of TRP-1, Tyr, Pmel17, and MITF in hair bulbs/ORS of HFs. The 5 Gy also significantly induced ectopically pigmented melanocytes and increased the expression of DNA damage and senescence in HFs. Finally, RNA-seq analysis of the model suggested that IR resulted in cell DNA damage, and the accumulation of oxidative stress in the keratinocytes. Oxidative stress and DNA damage caused cell dysfunction and decreased melanin synthesis in the gray HFs. We found that HFs irradiated at 5 Gy successfully constructed an appropriate aging HF model. This may provide a useful model for cost-effective and predictable treatment strategies to human hair graying and the process of aging.


Subject(s)
Aging , Hair Follicle , Humans , Mice , Animals , Aged , Aging/physiology , Hair Follicle/metabolism , Keratinocytes/radiation effects , Melanocytes/metabolism , Oxidative Stress
8.
Chemosphere ; 311(Pt 1): 136898, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36257394

ABSTRACT

To prevent the scale formation in the equipments and pipelines after pre-treated coal gasification gray water (CGGW) entering the reuse system and reduce the influence of various pollutants in the effluent on subsequent biochemical treatment, this study presented a coupled use of pulse electrocoagulation (PEC) and chemical precipitation (CP) coupling method for the pretreatment of coal gasification gray water (CGGW). In addition, the operation parameters of PEC and the reaction conditions of PEC-CP were optimized based on iron plate as electrode and total hardness, turbidity and sludge yield as assessment indicators. Due to the formation of multi-hydroxyl iron by several minutes of pulse current, and the addition of pH regulator and coagulant aid, the efficient removal of various ions, hardness and turbidity was significantly reduced via various mechanism such as redox, precipitation, adsorption and coagulation reaction. The result indicated that under the optimal operation conditions, the total hardness, turbidity, and Fen+ of PEC-CP effluents were 275.0 mg/L, 3.0 NTU and 5.6 mg/L, respectively and sludge amount was 0.88 kg/m3. The removal rates of Si, B, Mn, Ba, COD, NPOC and NH4+-N by PEC-CP reached 80.0%, 75.4%, 97.0%, 99.8%, 35.0%, 33.6% and 23.8%, respectively. The present results suggested that the CGGW pretreatment effluents could be not only reused directly, but also greatly alleviate the scaling problem of water pipeline and coal gasification production facilities.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Coal , Wastewater , Sewage , Water , Chemical Precipitation , Electrocoagulation , Iron , Water Pollutants, Chemical/analysis , Waste Disposal, Fluid/methods
9.
J Hazard Mater ; 437: 129368, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35897171

ABSTRACT

Since lager quantities of the zinc (Zn) smelting slags were traditionally dumped at the indigenous Zn smelting sites, the release characterization of potentially toxic elements (PTEs) from the Zn smelting slags under various environmental conditions were of great significance for an environmental risk analysis. The acidification of the Zn smelting slags to pH= 4 and 6 would result in the leaching concentrations of Cd and Mn exceeding the fourth-class standard of surface water quality standard in China (GB3838-2002). Notably, most metals exhibited an amphoteric leaching pattern, where the highest leached concentrations of As, Cd, Cu, Mn, Pb, and Zn were 4.15, 4.21, 140.0, 78.1, 156.9 and 477.0 mg/L, respectively. In addition, the highest release of toxic metals within 96 h reached 0.17 % of As, 3.50 % of Cd, 2.77 % of Cu, 6.92 % of Mn, 0.13 % of Pb, and 2.57 % of Zn, respectively. The combined results of various characterization techniques suggested that the PTEs remobilization effected by rhizosphere-like organic acids were mainly controlled by the precipitation of newly formed Fe, Mn and Al (hydr) oxides and the complexation of organic ligands. The present study results could provide valuable insights into the long-term leaching behaviors of PTEs from the Zn smelting slags to reduce ecological hazard.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , China , Environmental Monitoring , Lead/analysis , Metals, Heavy/analysis , Rhizosphere , Soil Pollutants/analysis , Zinc/analysis
10.
J Cosmet Dermatol ; 21(10): 4697-4702, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35441795

ABSTRACT

BACKGROUND: Local tumescent anesthesia relieves postoperative pain. OBJECTIVE: The objective of the study was to compare the effect of injecting a tumescent solution with/without ropivacaine on postoperative pain. METHODS: A randomized, double-blind control study was conducted in 314 patients who underwent first follicular unit excision after obtaining informed consent and ethics committee approval. The patients were randomly divided into three groups: intra-groups (group 1, injected with tumescent solution with ropivacaine; group 2, without ropivacaine) and inter-group (group 3, right-head/left-head side with/without ropivacaine). Postoperative pain was recorded using the 5-point Wong-Baker Faces Pain Scale. No preoperative analgesic was administered to any patient. The survival rate of hair follicles was measured using dermoscopy during follow-up. Data were statistically analyzed. RESULTS: Of the 314 patients included in the study, 166 were men and 148 were women with a mean age of 32.15 ± 4.58 (range, 25-45) years. Postoperative pain with ropivacaine was significantly more relieved compared with that without ropivacaine in both groups (p < 0.05). There was no significant difference between sex and survival rate of hair follicles in the intra- or inter-group. CONCLUSION: A tumescent solution with ropivacaine has proven to relieve postoperative pain and is a safe and valuable form of local anesthesia in follicular unit excision.


Subject(s)
Amides , Anesthetics, Local , Male , Humans , Female , Adult , Ropivacaine , Pain, Postoperative/diagnosis , Pain, Postoperative/drug therapy , Pain, Postoperative/etiology , Anesthesia, Local , Double-Blind Method
11.
Article in English | MEDLINE | ID: mdl-35409945

ABSTRACT

Antimony (Sb) pollution in soils is an important environmental problem, and it is imperative to investigate the migration and transformation behavior of Sb in soils. The adsorption behaviors and interaction mechanisms of Sb in soils were studied using integrated characterization techniques and the batch equilibrium method. The results indicated that the adsorption kinetics and isotherms of Sb onto soils were well fitted by the first-order kinetic, Langmuir, and Freundlich models, respectively, while the maximum adsorbed amounts of Sb (III) in soil 1 and soil 2 were 1314.46 mg/kg and 1359.25 mg/kg, respectively, and those of Sb (V) in soil 1 and soil 2 were 415.65 mg/kg and 535.97 mg/kg, respectively. In addition, pH ranging from 4 to 10 had little effect on the adsorption behavior of Sb. Moreover, it was found that Sb was mainly present in the residue fractions, indicating that Sb had high geochemical stability in soils. SEM analysis indicated that the distribution positions of Sb were highly coincident with Ca, which was mainly due to the existence of calcium oxides, such as calcium carbonate and calcium hydroxide, that affected Sb adsorption, and further resulted in Sb and Ca bearing co-precipitation. XPS analysis revealed the valence state transformation of Sb (III) and Sb (V), suggesting that Fe/Mn oxides and reactive oxygen species (ROS) served as oxidant or reductant to promote the occurrence of the Sb redox reaction. Sb was mobile and leachable in soils and posed a significant threat to surface soils, organisms, and groundwater. This work provides a fundamental understanding of Sb adsorption onto soils, as well as a theoretical guide for studies on the adsorption and migration behavior of Sb in soils.


Subject(s)
Antimony , Soil Pollutants , Adsorption , Antimony/chemistry , Oxides/analysis , Soil/chemistry , Soil Pollutants/analysis
12.
Environ Sci Pollut Res Int ; 29(38): 57296-57305, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35352226

ABSTRACT

Mineralogy was an important driver for the environmental release of heavy metals. Therefore, the present work was conducted by coupling mineral liberation analyzer (MLA) with complementary geochemical tests to evaluate the geochemical behaviors and their potential environmental risks of heavy metals in the smelter contaminated soil. MLA analysis showed that the soil contained 34.0% of quartz, 17.15% of biotite, 1.36% of metal sulfides, 19.48% of metal oxides, and 0.04% of gypsum. Moreover, As, Pb, and Zn were primarily hosted by arsenopyrite (29.29%), galena (88.41%), and limonite (24.15%), respectively. The integrated geochemical results indicated that among the studied metals, Cd, Cu, Mn, Pb, and Zn were found to be more bioavailable, bioaccessible, and mobile. Based on the combined mineralogical and geochemical results, the environmental release of smelter-driven elements such as Cd, Cu, Mn, Pb, and Zn were mainly controlled by the acidic dissolution of minerals with neutralizing potential, the reductive dissolution of Fe/Mn oxides, and the partial oxidation of metal sulfide minerals. The present study results have confirmed the great importance of mineralogy analysis and geochemical approaches to explain the contribution of smelting activities to soil pollution risks.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium/analysis , China , Environmental Monitoring/methods , Environmental Pollution/analysis , Lead/analysis , Metals, Heavy/analysis , Minerals/analysis , Oxides/analysis , Soil/chemistry , Soil Pollutants/analysis
13.
J Hazard Mater ; 424(Pt A): 127127, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34601404

ABSTRACT

This study comprehensively investigated the potential roles of soil mineralogy identified by the automated mineral liberation analysers (MLA) in the prediction of geochemical behavior of toxic metals in the smelter polluted soils. The results from modal mineralogy revealed that the non-reactive silicate phases such as quartz (42.05%) and biotite (40.43%) were the major mineralogical phases. The element deportment showed that fayalite, lead oxide, apatite, galena and wollastonite were identified as the dominant As, Cd, Pb and Zn bearing minerals. Furthermore, MLA analysis also confirmed that Pb was most concentrated in the smaller particles of lead oxide, which significantly enhanced Pb release in reaction with the chemical extractant during chemical kinetic tests. The results from pH-dependent leaching tests indicated that the leaching concentrations of As, Pb and Zn increased at low and high pH values, but were lowest at the neutral pH range. In addition, the results from the kinetic study demonstrated that the second order model provided the best description for the release patterns of the main metal contaminants in the bioavailability and bioaccessibility tests. The integrated geochemical analysis demonstrated that among these studied elements, As showed a typical geochemical pattern, which was predominantly controlled by 90.09% of fayalite. The above study results would have significant implications for soil remediation and risk management of smelter contaminated sites.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Lead , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis , Zinc/analysis
14.
J Hazard Mater ; 425: 127864, 2022 03 05.
Article in English | MEDLINE | ID: mdl-34915297

ABSTRACT

Smelting slags is a well-known industrial solid waste, while there were limited studies on the key factors controlling the potential health risks caused by these smelting slags. In this work, the metal bioaccessibility in the size fractionated-zinc smelting slags was examined using various In vitro assays, in combination with multidisciplinary methods. The results indicated that the bioaccessible fractions of heavy metals showed a significant difference, but no statistical difference among different particle sizes of the zinc smelting slags. The bioaccessible metal fractions in the gastric (GP) and gastrointestinal (GIP) phases were 0 (Cr) - 91.39% (Cd)) and 0 (Cr) - 47.80% (Ni). Among the studied metals, Cd, Cu, Mn, Pb and Zn were the most bioaccessible to human. The Pearson correlation analysis showed that the carbonate bound phases of heavy metals were responsible for their bioaccessibility in GP and GIP. Moreover, the combined results of multidisciplinary characterization also further implied that the solubility behaviors of toxic elements in the smelting slags were dominated by soluble metal bearing- mineral phases and absorbable Fe, Mn and Al-rich minerals and metal bearing-precipitates during SBRC extractions. Therefore, these study results provide a insight into the potential controls of metal bioaccessibility in the zinc smelting slags, which was of great significance from the aspects of their resource recycling and risk management.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Environmental Monitoring , Humans , Industrial Waste/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Zinc/analysis
15.
Article in English | MEDLINE | ID: mdl-34444310

ABSTRACT

Despite recent studies have investigated the strong influences of smelting activities on heavy metal contamination in the soil environment, little studies have been conducted on the current information about the potential environmental risks posed by toxic heavy metals in smelting contaminated sites. In the present study, a combination of the bioavailability, speciation, and release kinetics of toxic heavy metals in the indigenous zinc smelting contaminated soil were reliably used as an effective tool to support site risk assessment. The bioavailability results revealed that the bioavailable metal concentrations were intrinsically dependent on the types of chemical extractants. Interestingly, 0.02 mol/L EDTA + 0.5 mol/L CH3COONH4 was found to be the best extractant, which extracted 30.21% of Cu, 31.54% of Mn, 2.39% of Ni and 28.89% of Zn, respectively. The sequential extraction results suggested that Cd, Pb, and Zn were the most mobile elements, which would pose the potential risks to the environment. The correlation of metal bioavailability with their fractionation implied that the exchangeable metal fractions were easily extracted by CaCl2 and Mehlich 1, while the carbonate and organic bound metal fractions could be extracted by EDTA and DTPA with stronger chelating ability. Moreover, the kinetic modeling results suggested that the chemical desorption mechanism might be the major factor controlling heavy metal release. These results could provide some valuable references for the risk assessment and management of heavy metals in the smelting contaminated sites.


Subject(s)
Metals, Heavy , Soil Pollutants , Biological Availability , China , Environmental Monitoring , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Zinc/analysis
16.
Environ Sci Pollut Res Int ; 27(15): 18672-18684, 2020 May.
Article in English | MEDLINE | ID: mdl-32207013

ABSTRACT

The present study was initiated to investigate the geochemical features and associated pollution risks of selected heavy metals in sediments near an active copper sulfide mines, south China. These results indicated that legacy contamination in sediments were mainly Cd (11.9 mg/kg), Cu (0.106%), Pb (0.189%), Zn (0.0958%), and As (0.158%). Furthermore, the geochemical variability of most elements, ranging from 5.66% for K2O to 24.99% for Cd, was relatively lower. On the spatial scale, the variation patterns of multi-elements did not show a decreasing trend. The multivariate statistical analysis revealed that the significant enrichment of the studied elements was mostly related to the geochemical background and anthropogenic sources. Besides that, the stable climate might have positive influences on the leachability patterns of heavy metals in sediment profiles. According to the results of the potential ecological risk index (PERI), Cd, Cu, Pb, and As were identified as the riskiest elements due to their rather higher contribution ratios to pollution risk. In response to continuous exposure risks, the significant enrichment of these mining-derived elements should be preferentially concerned. Finally, some reasonable action is proposed for aquatic environment protection. Graphical abstract.


Subject(s)
Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , China , Environmental Monitoring , Geologic Sediments , Risk Assessment
17.
Chemosphere ; 239: 124748, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31520971

ABSTRACT

A total of 100 samples were collected from the sediments of a typical copper mining area, south China. Leaching concentrations of selected heavy metals (Ni, Cd, Cu, Pb, Zn, Ba, As, and Hg) were measured to evaluate their distribution patterns and associated health risk. Leaching concentrations of Cu (3.58 ±â€¯1.49 mg/L), Pb (1.50 ±â€¯1.06 mg/L), and Zn (4.04 ±â€¯1.68 mg/L) were significantly higher than the other metals in the samples. By evaluating the spatial heterogeneity, it was found that leaching metal concentrations did not decrease with environmental gradients, mostly caused by diverse distribution in pollution sources. The hazard index and carcinogenic risk indices showed significant risks of human exposure. For public safety, priority governance should be given to the main pollutants (Cd, Cu, Pb, Zn, and As) in sediments. In future studies, the integrated data will be urgently required for local stakeholders to conduct environmental monitoring and remediation scenarios.


Subject(s)
Geologic Sediments/analysis , Metals, Heavy/analysis , Mining , Soil Pollutants/analysis , Water Pollutants, Chemical/toxicity , Carcinogens/toxicity , China , Copper , Environmental Exposure/adverse effects , Environmental Monitoring , Humans , Metals, Heavy/toxicity , Models, Theoretical , Public Health , Risk Assessment , Soil Pollutants/toxicity , Water Pollutants, Chemical/analysis
18.
Environ Sci Pollut Res Int ; 26(35): 35657-35669, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31732950

ABSTRACT

Mine tailings, generated from the extraction, processing, and utilization of mineral resources, have resulted in serious acid mine drainage (AMD) pollution. Recently, scholars are paying more attention to two alternative strategies for resource recovery and ecological reclamation of mine tailings that help to improve the current tailing management, and meanwhile reduce the negative environmental outcomes. This review suggests that the principles of geochemical evolution may provide new perspective for the future in-depth studies regarding the pollution control and risk management. Recent advances in three recycling approaches of tailing resources, termed metal recovery, agricultural fertilizer, and building materials, are further described. These recycling strategies are significantly conducive to decrease the mine tailing stocks for problematic disposal. In this regard, the future recycling approaches should be industrially applicable and technically feasible to achieve the sustainable mining operation. Finally, the current state of tailing phytoremediation technologies is also discussed, while identification and selection of the ideal plants, which is perceived to be the excellent candidates of tailing reclamation, should be the focus of future studies. Based on the findings and perspectives of this review, the present study can act as an important reference for the academic participants involved in this promising field.


Subject(s)
Ecology/methods , Minerals/analysis , Agriculture , Biodegradation, Environmental , Construction Materials , Metals/chemistry , Mining , Plants/chemistry , Recycling
19.
Internet resource in Portuguese | LIS -Health Information Locator, LIS-bvsms | ID: lis-46515

ABSTRACT

Site da Sociedade Brasileira de Cirurgia da Mão


Subject(s)
Hand Injuries , Hand , Hand Bones
20.
Environ Sci Pollut Res Int ; 25(36): 36702-36711, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30377971

ABSTRACT

Heavy metal pollution from mining tailings has become a serious concern in China. Here, we quantitatively evaluated the accumulation status and environmental risk of the tailings impoundments located in a typical Pb-Zn mining area in Guangdong Province, South China. The distributional characteristics of the heavy metals in the tailings impoundment area were analyzed. The results showed that the spatial distributions of the heavy metals contained in the tailings were dependent on the geochemical characteristics of the mine tailings rather than on their diversified profile depths. Furthermore, the risk assessment of the heavy metal pollution in the soils surrounding the tailings impoundment showed that the comprehensive Nemerow pollution index (NPI) of the tested surface soil samples was higher than 3.0; thus, these values were much greater than those of the deep soil. Meanwhile, multivariate statistical analysis revealed that the heavy metals contained in the surrounding soils, such as Pb, Zn, Cu, Cd, As, and Tl, experienced similar geochemical processes. The analysis of drainage water samples indicated that surface runoff from the tailings impoundment was the main route for the migration of heavy metals. Moreover, the alkaline substances would be consumed by the acid that is continuously generated in the tailings pond, and this increases the risk of heavy metals migrating from the tailings impoundment area. Lastly, resource analysis and process mineralogy analysis showed that the tailings had a high recovery value, and the recovery of tailings would completely eliminate the environmental risks posed by the tailings.


Subject(s)
Environmental Monitoring/methods , Lead/analysis , Mining , Soil Pollutants/analysis , Zinc/analysis , China , Metals, Heavy/analysis , Multivariate Analysis , Risk Assessment , Soil/chemistry , Spatial Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...