Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Clin Cancer Res ; 38(1): 251, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31196146

ABSTRACT

BACKGROUND: Cardiac glycosides are approved for the treatment of heart failure as Na+/K+ pump inhibitors. Their repurposing in oncology is currently investigated in preclinical and clinical studies. However, the identification of a specific cancer type defined by a molecular signature to design targeted clinical trials with cardiac glycosides remains to be characterized. Here, we demonstrate that cardiac glycoside proscillaridin A specifically targets MYC overexpressing leukemia cells and leukemia stem cells by causing MYC degradation, epigenetic reprogramming and leukemia differentiation through loss of lysine acetylation. METHODS: Proscillaridin A anticancer activity was investigated against a panel of human leukemia and solid tumor cell lines with different MYC expression levels, overexpression in vitro systems and leukemia stem cells. RNA-sequencing and differentiation studies were used to characterize transcriptional and phenotypic changes. Drug-induced epigenetic changes were studied by chromatin post-translational modification analysis, expression of chromatin regulators, chromatin immunoprecipitation, and mass-spectrometry. RESULTS: At a clinically relevant dose, proscillaridin A rapidly altered MYC protein half-life causing MYC degradation and growth inhibition. Transcriptomic profile of leukemic cells after treatment showed a downregulation of genes involved in MYC pathways, cell replication and an upregulation of hematopoietic differentiation genes. Functional studies confirmed cell cycle inhibition and the onset of leukemia differentiation even after drug removal. Proscillaridin A induced a significant loss of lysine acetylation in histone H3 (at lysine 9, 14, 18 and 27) and in non-histone proteins such as MYC itself, MYC target proteins, and a series of histone acetylation regulators. Global loss of acetylation correlated with the rapid downregulation of histone acetyltransferases. Importantly, proscillaridin A demonstrated anticancer activity against lymphoid and myeloid stem cell populations characterized by MYC overexpression. CONCLUSION: Overall, these results strongly support the repurposing of proscillaridin A in MYC overexpressing leukemia.


Subject(s)
Antineoplastic Agents/adverse effects , Gene Expression/drug effects , Genes, myc , Heart Failure/etiology , Leukemia/genetics , Lysine/metabolism , Proscillaridin/adverse effects , Acetylation , Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Chromatin/genetics , Chromatin/metabolism , Dose-Response Relationship, Drug , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Histones/metabolism , Humans , Leukemia/complications , Leukemia/drug therapy , Leukemia/metabolism , Models, Biological , Proscillaridin/therapeutic use , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
2.
Cancer J ; 23(5): 270-276, 2017.
Article in English | MEDLINE | ID: mdl-28926427

ABSTRACT

Targeting DNA hypermethylation, using nucleoside analogs, is an efficient approach to reprogram cancer cell epigenome leading to reduced proliferation, increased differentiation, recognition by the immune system, and ultimately cancer cell death. DNA methyltransferase inhibitors have been approved for the treatment of myelodysplastic syndromes, chronic myelomonocytic leukemia, and acute myelogenous leukemia. To improve clinical efficacy and overcome mechanisms of drug resistance, a second generation of DNA methyltransferase inhibitors has been designed and is currently in clinical trials. Although efficient in monotherapy against hematologic malignancies, the potential of DNA methyltransferase inhibitors to synergize with small molecules targeting chromatin or immunotherapy will provide additional opportunities for their future clinical application against leukemia and solid tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA Methylation , DNA Modification Methylases/antagonists & inhibitors , Molecular Targeted Therapy/methods , Neoplasms/drug therapy , Antimetabolites, Antineoplastic/pharmacology , Antimetabolites, Antineoplastic/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Drug Resistance, Neoplasm/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epigenesis, Genetic , Humans , Immunotherapy/methods , Neoplasms/genetics , Neoplasms/pathology
3.
Mol Cancer Ther ; 16(2): 397-407, 2017 02.
Article in English | MEDLINE | ID: mdl-27980103

ABSTRACT

Epigenetic drugs, such as DNA methylation inhibitors (DNMTi) or histone deacetylase inhibitors (HDACi), are approved in monotherapy for cancer treatment. These drugs reprogram gene expression profiles, reactivate tumor suppressor genes (TSG) producing cancer cell differentiation and apoptosis. Epigenetic drugs have been shown to synergize with other epigenetic drugs or various anticancer drugs. To discover new molecular entities that enhance epigenetic therapy, we performed a high-throughput screening using FDA-approved libraries in combination with DNMTi or HDACi. As a screening model, we used YB5 system, a human colon cancer cell line, which contains an epigenetically silenced CMV-GFP locus, mimicking TSG silencing in cancer. CMV-GFP reactivation is triggered by DNMTi or HDACi and responds synergistically to DNMTi/HDACi combination, which phenocopies TSG reactivation upon epigenetic therapy. GFP fluorescence was used as a quantitative readout for epigenetic activity. We discovered that 45 FDA-approved drugs (4% of all drugs tested) in our FDA-approved libraries enhanced DNMTi and HDACi activity, mainly belonging to anticancer and antiarrhythmic drug classes. Transcriptome analysis revealed that combination of decitabine (DNMTi) with the antiarrhythmic proscillaridin A produced profound gene expression reprogramming, which was associated with downregulation of 153 epigenetic regulators, including two known oncogenes in colon cancer (SYMD3 and KDM8). Also, we identified about 85 FDA-approved drugs that antagonized DNMTi and HDACi activity through cytotoxic mechanisms, suggesting detrimental drug interactions for patients undergoing epigenetic therapy. Overall, our drug screening identified new combinations of epigenetic and FDA-approved drugs, which can be rapidly implemented into clinical trials. Mol Cancer Ther; 16(2); 397-407. ©2016 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Colonic Neoplasms/genetics , Drug Repositioning , Epigenesis, Genetic/drug effects , Epigenomics , Gene Expression Regulation, Neoplastic/drug effects , Cell Line, Tumor , Cluster Analysis , Colonic Neoplasms/drug therapy , Computational Biology/methods , DNA Methylation/drug effects , Drug Discovery , Drug Interactions , Drug Screening Assays, Antitumor , Epigenomics/methods , Gene Expression , Gene Expression Profiling , Genes, Reporter , High-Throughput Screening Assays , Histone Deacetylase Inhibitors/pharmacology , Humans , Reproducibility of Results , Small Molecule Libraries
SELECTION OF CITATIONS
SEARCH DETAIL
...