ABSTRACT
The efficient recognition of symptoms in viral infections holds promise for swift and precise diagnosis, thus mitigating health implications and the potential recurrence of infections. COVID-19 presents unique challenges due to various factors influencing diagnosis, especially regarding disease symptoms that closely resemble those of other viral diseases, including other strains of SARS, thus impacting the identification of useful and meaningful symptom patterns as they emerge in infections. Therefore, this study proposes an association rule mining approach, utilising the Apriori algorithm to analyse the similarities between individuals with confirmed SARS-CoV-2 diagnosis and those with unspecified SARS diagnosis. The objective is to investigate, through symptom rules, the presence of COVID-19 patterns among individuals initially not diagnosed with the disease. Experiments were conducted using cases from Brazilian SARS datasets for São Paulo State. Initially, reporting percentage similarities of symptoms in both groups were analysed. Subsequently, the top ten rules from each group were compared. Finally, a search for the top five most frequently occurring positive rules among the unspecified ones, and vice versa, was conducted to identify identical rules, with a particular focus on the presence of positive rules among the rules of individuals initially diagnosed with unspecified SARS.
Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Brazil/epidemiology , Severe Acute Respiratory Syndrome/epidemiology , Algorithms , Prevalence , PandemicsABSTRACT
Efficiently recognising severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) symptoms enables a quick and accurate diagnosis to be made, and helps in mitigating the spread of the coronavirus disease 2019. However, the emergence of new variants has caused constant changes in the symptoms associate with COVID-19. These constant changes directly impact the performance of machine-learning-based diagnose. In this context, considering the impact of these changes in symptoms over time is necessary for accurate diagnoses. Thus, in this study, we propose a machine-learning-based approach for diagnosing COVID-19 that considers the importance of time in model predictions. Our approach analyses the performance of XGBoost using two different time-based strategies for model training: month-to-month and accumulated strategies. The model was evaluated using known metrics: accuracy, precision, and recall. Furthermore, to explain the impact of feature changes on model prediction, feature importance was measured using the SHAP technique, an XAI technique. We obtained very interesting results: considering time when creating a COVID-19 diagnostic prediction model is advantageous.