Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 128: 158-161, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30508582

ABSTRACT

With the increase in bacterial resistance to antibiotics, many studies have been directed towards finding new agents with antibacterial activity, such as studies with natural products. These products can have antibacterial activity such as d-limonene as described in the literature. The aim of this study was to evaluate the antibacterial activity of d-limonene, isolated and complexed with ß-cyclodextrin, and to evaluate its potentiating activity of different antibiotic classes. Antibacterial activity was determined by the broth microdilution method, obtaining in this way the Minimal Inhibitory Concentration (MIC), with the antibiotic modulatory activity being obtained using a sub-inhibitory concentration (MIC/8). d-Limonene showed a MIC equal to 256 µg/mL against standard S. aureus and 512 µg/mL against resistant P. aeruginosa. In the gentamicin modulatory activity, the isolated d-limonene presented synergism against S. aureus and E. coli bacteria. Thus, d-limonene showed relevant clinical antibacterial activity, for both Gram-positive and Gram-negative bacteria as well as a synergistic effect when associated with gentamicin. These results are promising in the combat against bacterial resistance, however further studies are needed to better elucidate the mechanisms of action.


Subject(s)
Anti-Bacterial Agents/pharmacology , Limonene/chemistry , Limonene/pharmacology , beta-Cyclodextrins/chemistry , Bacteria/drug effects
2.
PeerJ ; 6: e5476, 2018.
Article in English | MEDLINE | ID: mdl-30402343

ABSTRACT

Medicinal plants play a crucial role in the search for components that are capable of neutralizing the multiple mechanisms of fungal resistance. Psidium salutare (Kunth) O. Berg is a plant native to Brazil used as both food and traditional medicine to treat diseases and symptoms such as stomach ache and diarrhea, whose symptoms could be related to fungal infections from the genus Candida. The objective of this study was to investigate the influence of seasonal variability on the chemical composition of the Psidium salutare essential oil, its antifungal potential and its effect on the Candida albicans morphogenesis. The essential oils were collected in three different seasonal collection periods and isolated by the hydrodistillation process in a modified Clevenger apparatus with identification of the chemical composition determined by gas chromatography coupled to mass spectrometry (GC/MS). The antifungal assays were performed against Candida strains through the broth microdilution method to determine the minimum fungicidal concentration (MFC). Fungal growth was assessed by optical density reading and the Candida albicans dimorphic effect was evaluated by optical microscopy in microculture chambers. The chemical profile of the essential oils identified 40 substances in the different collection periods with γ-terpinene being the predominant constituent. The antifungal activity revealed an action against the C. albicans, C. krusei and C. tropicalis strains with an IC50 ranging from 345.5 to 2,754.2 µg/mL and a MFC higher than 1,024 µg/mL. When combined with essential oils at sub-inhibitory concentrations (MIC/16), fluconazole had its potentiated effect, i.e. a synergistic effect was observed in the combination of fluconazole with P.salutare oil against all Candida strains; however, for C. albicans, its effect was reinforced by the natural product in all the collection periods. The results show that the Psidium salutare oil affected the dimorphic transition capacity, significantly reducing the formation of hyphae and pseudohyphae in increasing concentrations. The results show that P. salutare oil exhibits a significant antifungal activity against three Candida species and that it can act in synergy with fluconazole. These results support the notion that this plant may have a potential use in pharmaceutical and preservative products.

SELECTION OF CITATIONS
SEARCH DETAIL
...