Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 49(12): 7053-7074, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34125911

ABSTRACT

Eukaryotic ribosome biogenesis is an elaborate process during which ribosomal proteins assemble with the pre-rRNA while it is being processed and folded. Hundreds of assembly factors (AF) are required and transiently recruited to assist the sequential remodeling events. One of the most intricate ones is the stepwise removal of the internal transcribed spacer 2 (ITS2), between the 5.8S and 25S rRNAs, that constitutes together with five AFs the pre-60S 'foot'. In the transition from nucleolus to nucleoplasm, Nop53 replaces Erb1 at the basis of the foot and recruits the RNA exosome for the ITS2 cleavage and foot disassembly. Here we comprehensively analyze the impact of Nop53 recruitment on the pre-60S compositional changes. We show that depletion of Nop53, different from nop53 mutants lacking the exosome-interacting motif, not only causes retention of the unprocessed foot in late pre-60S intermediates but also affects the transition from nucleolar state E particle to subsequent nuclear stages. Additionally, we reveal that Nop53 depletion causes the impairment of late maturation events such as Yvh1 recruitment. In light of recently described pre-60S cryo-EM structures, our results provide biochemical evidence for the structural role of Nop53 rearranging and stabilizing the foot interface to assist the Nog2 particle formation.


Subject(s)
Nuclear Proteins/physiology , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/physiology , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Dual-Specificity Phosphatases/metabolism , GTP Phosphohydrolases/metabolism , Mutation , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Organelle Biogenesis , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
PLoS Pathog ; 17(1): e1009272, 2021 01.
Article in English | MEDLINE | ID: mdl-33497423

ABSTRACT

Trypanosoma cruzi alternates between replicative and nonreplicative life forms, accompanied by a shift in global transcription levels and by changes in the nuclear architecture, the chromatin proteome and histone posttranslational modifications. To gain further insights into the epigenetic regulation that accompanies life form changes, we performed genome-wide high-resolution nucleosome mapping using two T. cruzi life forms (epimastigotes and cellular trypomastigotes). By combining a powerful pipeline that allowed us to faithfully compare nucleosome positioning and occupancy, more than 125 thousand nucleosomes were mapped, and approximately 20% of them differed between replicative and nonreplicative forms. The nonreplicative forms have less dynamic nucleosomes, possibly reflecting their lower global transcription levels and DNA replication arrest. However, dynamic nucleosomes are enriched at nonreplicative regulatory transcription initiation regions and at multigenic family members, which are associated with infective-stage and virulence factors. Strikingly, dynamic nucleosome regions are associated with GO terms related to nuclear division, translation, gene regulation and metabolism and, notably, associated with transcripts with different expression levels among life forms. Finally, the nucleosome landscape reflects the steady-state transcription expression: more abundant genes have a more deeply nucleosome-depleted region at putative 5' splice sites, likely associated with trans-splicing efficiency. Taken together, our results indicate that chromatin architecture, defined primarily by nucleosome positioning and occupancy, reflects the phenotypic differences found among T. cruzi life forms despite the lack of a canonical transcriptional control context.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Nucleosomes/genetics , Trypanosoma cruzi/genetics , Chromatin Assembly and Disassembly , DNA Replication , Trypanosoma cruzi/cytology
3.
Front Microbiol ; 9: 693, 2018.
Article in English | MEDLINE | ID: mdl-29692765

ABSTRACT

Trypanosoma cruzi is the etiologic agent of Chagas' disease. It is known that amastigotes derived from trypomastigotes in the extracellular milieu are infective in vitro and in vivo. Extracellular amastigotes (EAs) have a stage-specific surface antigen called Ssp-4, a GPI-anchored glycoprotein that is secreted by the parasites. By immunoprecipitation with the Ssp-4-specific monoclonal antibodies (mAb) 2C2 and 1D9, we isolated the glycoprotein from EAs. By mass spectrometry, we identified the core protein of Ssp-4 and evaluated mRNA expression and the presence of Ssp-4 carbohydrate epitopes recognized by mAb1D9. We demonstrated that the carbohydrate epitope recognized by mAb1D9 could promote host cell invasion by EAs. Although infectious EAs express lower amounts of Ssp-4 compared with less-infectious EAs (at the mRNA and protein levels), it is the glycosylation of Ssp-4 (identified by mAb1D9 staining only in infectious strains and recognized by galectin-3 on host cells) that is the determinant of EA invasion of host cells. Furthermore, Ssp-4 is secreted by EAs, either free or associated with parasite vesicles, and can participate in host-cell interactions. The results presented here describe the possible role of a carbohydrate moiety of T. cruzi surface glycoproteins in host cell invasion by EA forms, highlighting the potential of these moieties as therapeutic and vaccine targets for the treatment of Chagas' disease.

4.
J Biol Chem ; 292(29): 12267-12284, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28539363

ABSTRACT

The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In Saccharomyces cerevisiae, Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/metabolism , Exosomes/metabolism , Karyopherins/metabolism , Nuclear Localization Signals/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , beta Karyopherins/metabolism , Active Transport, Cell Nucleus , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/genetics , Exosomes/enzymology , Gene Deletion , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Karyopherins/chemistry , Karyopherins/genetics , Microscopy, Confocal , Microscopy, Fluorescence , Nuclear Localization Signals/chemistry , Nuclear Localization Signals/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Interaction Domains and Motifs , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , beta Karyopherins/chemistry , beta Karyopherins/genetics
5.
J Eukaryot Microbiol ; 64(4): 491-503, 2017 07.
Article in English | MEDLINE | ID: mdl-27864857

ABSTRACT

The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.


Subject(s)
Giardia lamblia/physiology , Small Ubiquitin-Related Modifier Proteins/genetics , Tubulin/metabolism , Cell Cycle , Gene Knockdown Techniques , Giardia lamblia/metabolism , Mass Spectrometry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Trophozoites/physiology
6.
J Mol Evol ; 66(6): 591-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18473111

ABSTRACT

Caspase 1 (CASP-1) inhibitors share sequence similarity to CASP-1 itself and are all mapped to chr11q22.3. Here we show that these inhibitors are all products of a series of gene duplications that occurred at this locus after the divergence between human and mouse. Surprisingly, stop codons originated independently in all duplicated copies to generate CARD-only proteins with inhibitory activity. We discuss this evolutionary model in the context of both neo- and subfunctionalization.


Subject(s)
Carrier Proteins/genetics , Cysteine Proteinase Inhibitors/genetics , Evolution, Molecular , Intracellular Signaling Peptides and Proteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Base Sequence , Caspase 1/genetics , Codon, Terminator , Exons , Gene Duplication , Genes, Duplicate , Humans , Introns , Macaca mulatta , Molecular Sequence Data , Pan troglodytes/genetics
7.
Protist ; 158(2): 147-57, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17185034

ABSTRACT

The replication and segregation of organelles producing two identical daughter cells must be precisely controlled during the cell cycle progression of eukaryotes. In kinetoplastid flagellated protozoa, this includes the duplication of the single mitochondrion containing a network of DNA, known as the kinetoplast, and a flagellum that grows from a cytoplasmic basal body through the flagellar pocket compartment before emerging from the cell. Here, we show the morphological events and the timing of these events during the cell cycle of the epimastigote form of Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease. DNA staining, flagellum labeling, bromodeoxyuridine incorporation, and ultra-thin serial sections show that nuclear replication takes 10% of the whole cell cycle time. In the middle of the G2 stage, the new flagellum emerges from the flagellar pocket and grows unattached to the cell body. While the new flagellum is still short, the kinetoplast segregates and mitosis occurs. The new flagellum reaches its final size during cytokinesis when a new cell body is formed. These precisely coordinated cell cycle events conserve the epimastigote morphology with a single nucleus, a single kinetoplast, and a single flagellum status of the interphasic cell.


Subject(s)
Cell Cycle/physiology , DNA Replication/physiology , Mitosis , Trypanosoma cruzi/cytology , Animals , Cell Nucleus/physiology , DNA, Kinetoplast/analysis , DNA, Kinetoplast/genetics , Flagella , Trypanosoma cruzi/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...