Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 67(23-24): 2001-11, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15513898

ABSTRACT

3-Monochloro-1,2-propanediol (3-MCPD) is a food contaminant that is often found in foods containing acid-hydrolyzed (AH) protein, like seasonings and savory food products. The purpose of the present study was to investigate the effects of 3-MCPD on male fertility, sperm, and hormonal levels and its antifertility mechanism. In vivo male fertility testing was performed to observe the adverse effects of 3-MCPD on the functioning of the male reproductive system and pregnancy outcome. 3-MCPD (0.01-5 mg/kg) was administered daily by gavage to Sprague-Dawley (SD) male rats for 4 wk. At the end of the pretreatment period, male rats were mated overnight with untreated females. Males successfully inducing pregnancy were sacrificed to assess sperm parameters, reproductive organ histopathology, and spermatogenesis. The resulting pregnant females were sacrificed on 20 of gestation to evaluate pregnancy outcome. The paternal administration of 3-MCPD (5 mg/kg) was found to result in adverse effects on male fertility and pregnancy outcome without inducing remarkable histopathological changes in testes and epididymides. Additionally, 3-MCPD (5 mg/kg) significantly reduced sperm motility, copulation, fertility indices, and the number of live fetuses showed steep dose-response curves. 3-MCPD did not affect spermatogenesis or induce hormonal changes in the blood and testes of male rats. An in vitro hormone assay using primary isolated Leydig cells showed no significant changes in related hormone levels after 3-MCPD treatment. To evaluate the effects of 3-MCPD on apoptotic induction and H+-ATPase levels in the testis and epididymis, 10 or 100 mg/kg of 3-MCPD was administered by gavage to male rats and testes and epididymides were examined at 3, 6, 12, and 24 h later. Apoptosis was not detected in the testes of animals treated with 100 mg/kg 3-MCPD. However, the level of H+-ATPase in the cauda epididymis was reduced by 3-MCPD treatment. These results indicate that 3-MCPD induced a spermatotoxic effect, which was mediated by reduced H+-ATPase expression in the cauda epididymis, and suggest that an altered pH level in the cauda epididymis might lead to a disruption of sperm maturation and the acquisition of motility.


Subject(s)
Glycerol/analogs & derivatives , Glycerol/pharmacology , Glycerol/toxicity , Infertility, Male/chemically induced , Animals , Apoptosis/drug effects , Female , Male , Pregnancy , Pregnancy Outcome , Rats , Rats, Sprague-Dawley , Sperm Maturation , Sperm Motility/drug effects , Testis/cytology , Testis/pathology , alpha-Chlorohydrin
2.
J Toxicol Environ Health A ; 67(23-24): 2073-84, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15513904

ABSTRACT

Alcohol consumption during pregnancy results in morphological abnormalities in the fetuses of humans and experimental animals, and is referred to as fetal alcohol syndrome (FAS). However, the molecular mechanism underlying FAS has not been completely elucidated. The aim of the present study was to investigate the potential molecular mechanisms of ethanol-induced FAS in the developing embryo and fetus. cDNA microarray analysis was used to screen for altered gene profiles. Ethanol at a teratogenic dosage (3.8 g/kg, twice a day) was administered intraperitoneally to pregnant C57Bl/6J mice from gestation day (GD) 6 to 8. Morphologic observations showed excessive malformations of the craniofacial regions (reduction of the face, the absence of eyes, nose, jaw, and mandible, underdevelopment of vibrissae areas, cleft lip, and palate) in ethanol-exposed embryos (GD 10) and fetusus (GD 15). cDNA microarray analysis showed alterations in several gene profiles, including the "palate, lung, and nasal epithelium clone (plunc), "neurofilament, " and "pale ear. " Of these genes, the expressions of plunc were confirmed by reverse-transcription polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization. The plunc was highly expressed in the craniofacial region, specifically in upper airways and nasopharyngeal epithelium. RT-PCR analysis revealed that normal plunc mRNA expression levels were present in GD 15 fetuses, but not in GD 10 embryos. Interestingly, ethanol significantly downregulated the plunc expression in GD 15 fetuses. Our results suggest that ethanol-induced FAS is due in part to the downregulation of plunc expression in the fetus, and this gene may be a candidate biological marker for FAS.


Subject(s)
Central Nervous System Depressants/toxicity , Craniofacial Abnormalities/chemically induced , Ethanol/toxicity , Fetal Alcohol Spectrum Disorders/physiopathology , Gene Expression Regulation, Developmental/drug effects , Glycoproteins/biosynthesis , Phosphoproteins/biosynthesis , Prenatal Exposure Delayed Effects , Animals , Craniofacial Abnormalities/veterinary , Down-Regulation , Embryonic Development/drug effects , Female , Fetal Development/drug effects , Glycoproteins/genetics , Infusions, Parenteral , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Phosphoproteins/genetics , Pregnancy , RNA, Messenger/biosynthesis , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...