Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 2(2)2019 04.
Article in English | MEDLINE | ID: mdl-30988163

ABSTRACT

Aberrant mitochondrial dynamics disrupts mitochondrial function and contributes to disease conditions. A targeted RNA interference screen for deubiquitinating enzymes (DUBs) affecting protein levels of multifunctional mitochondrial fusion protein Mitofusin (MFN) identified USP8 prominently influencing MFN levels. Genetic and pharmacological inhibition of USP8 normalized the elevated MFN protein levels observed in PINK1 and Parkin-deficient models. This correlated with improved mitochondrial function, locomotor performance and life span, and prevented dopaminergic neurons loss in Drosophila PINK1 KO flies. We identified a novel target antagonizing pathologically elevated MFN levels, mitochondrial dysfunction, and dopaminergic neuron loss of a Drosophila model of mitochondrial dysfunction.


Subject(s)
Drosophila Proteins/antagonists & inhibitors , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Membrane Proteins/metabolism , Mitochondria/enzymology , Protein Serine-Threonine Kinases/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Specific Proteases/antagonists & inhibitors , Ubiquitin-Specific Proteases/metabolism , Animals , Cell Line , Dimethyl Sulfoxide/pharmacology , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Down-Regulation/genetics , Drosophila , Drosophila melanogaster/embryology , Gene Silencing , Longevity , Male , Mitochondria/pathology , Parkinson Disease/metabolism , Phenotype , Signal Transduction/drug effects , Transfection , Ubiquitin-Specific Proteases/genetics
2.
Mol Cell ; 64(6): 1127-1134, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27984746

ABSTRACT

Human cancers are characterized by the presence of oncogene-induced DNA replication stress (DRS), making them dependent on repair pathways such as break-induced replication (BIR) for damaged DNA replication forks. To better understand BIR, we performed a targeted siRNA screen for genes whose depletion inhibited G1 to S phase progression when oncogenic cyclin E was overexpressed. RAD52, a gene dispensable for normal development in mice, was among the top hits. In cells in which fork collapse was induced by oncogenes or chemicals, the Rad52 protein localized to DRS foci. Depletion of Rad52 by siRNA or knockout of the gene by CRISPR/Cas9 compromised restart of collapsed forks and led to DNA damage in cells experiencing DRS. Furthermore, in cancer-prone, heterozygous APC mutant mice, homozygous deletion of the Rad52 gene suppressed tumor growth and prolonged lifespan. We therefore propose that mammalian RAD52 facilitates repair of collapsed DNA replication forks in cancer cells.


Subject(s)
Adenomatous Polyposis Coli Protein/genetics , Cyclin E/genetics , DNA Breaks, Double-Stranded , DNA/genetics , Osteosarcoma/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Recombinational DNA Repair , Adenomatous Polyposis Coli Protein/deficiency , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin E/metabolism , DNA/metabolism , G1 Phase , Gene Expression , Genomic Instability , Humans , Mice , Mice, Knockout , Nocodazole/pharmacology , Osteosarcoma/metabolism , Osteosarcoma/mortality , Osteosarcoma/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rad52 DNA Repair and Recombination Protein/antagonists & inhibitors , Rad52 DNA Repair and Recombination Protein/metabolism , S Phase , Stress, Physiological , Survival Analysis
3.
J Biol Chem ; 290(8): 4537-4544, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25550160

ABSTRACT

Mitochondria of Drosophila melanogaster undergo Ca(2+)-induced Ca(2+) release through a putative channel (mCrC) that has several regulatory features of the permeability transition pore (PTP). The PTP is an inner membrane channel that forms from F-ATPase, possessing a conductance of 500 picosiemens (pS) in mammals and of 300 pS in yeast. In contrast to the PTP, the mCrC of Drosophila is not permeable to sucrose and appears to be selective for Ca(2+) and H(+). We show (i) that like the PTP, the mCrC is affected by the sense of rotation of F-ATPase, by Bz-423, and by Mg(2+)/ADP; (ii) that expression of human cyclophilin D in mitochondria of Drosophila S2R(+) cells sensitizes the mCrC to Ca(2+) but does not increase its apparent size; and (iii) that purified dimers of D. melanogaster F-ATPase reconstituted into lipid bilayers form 53-pS channels activated by Ca(2+) and thiol oxidants and inhibited by Mg(2+)/γ-imino ATP. These findings indicate that the mCrC is the PTP of D. melanogaster and that the signature conductance of F-ATPase channels depends on unique structural features that may underscore specific roles in different species.


Subject(s)
Adenosine Triphosphatases/metabolism , Calcium Channels/metabolism , Calcium Signaling/physiology , Calcium/metabolism , Drosophila Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Adenosine Triphosphatases/genetics , Animals , Calcium Channels/genetics , Cell Line , Drosophila Proteins/genetics , Drosophila melanogaster , Humans , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Permeability Transition Pore
5.
J Biol Chem ; 289(42): 29235-46, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25164807

ABSTRACT

Leigh Syndrome (LS) is the most common early-onset, progressive mitochondrial encephalopathy usually leading to early death. The single most prevalent cause of LS is occurrence of mutations in the SURF1 gene, and LS(Surf1) patients show a ubiquitous and specific decrease in the activity of mitochondrial respiratory chain complex IV (cytochrome c oxidase, COX). SURF1 encodes an inner membrane mitochondrial protein involved in COX assembly. We established a Drosophila melanogaster model of LS based on the post-transcriptional silencing of CG9943, the Drosophila homolog of SURF1. Knockdown of Surf1 was induced ubiquitously in larvae and adults, which led to lethality; in the mesodermal derivatives, which led to pupal lethality; or in the central nervous system, which allowed survival. A biochemical characterization was carried out in knockdown individuals, which revealed that larvae unexpectedly displayed defects in all complexes of the mitochondrial respiratory chain and in the F-ATP synthase, while adults had a COX-selective impairment. Silencing of Surf1 expression in Drosophila S2R(+) cells led to selective loss of COX activity associated with decreased oxygen consumption and respiratory reserve. We conclude that Surf1 is essential for COX activity and mitochondrial function in D. melanogaster, thus providing a new tool that may help clarify the pathogenic mechanisms of LS.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Leigh Disease/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , ATP Synthetase Complexes/metabolism , Animals , Cell Line , Drosophila Proteins/physiology , Electron Transport , Electron Transport Complex IV/metabolism , Gene Expression Profiling , Gene Silencing , Humans , Membrane Potential, Mitochondrial , Membrane Proteins/physiology , Mifepristone/chemistry , Mitochondria/enzymology , Mitochondrial Proteins/physiology , Mutation , Oxygen/metabolism , RNA Interference , RNA Processing, Post-Transcriptional , RNA, Double-Stranded/chemistry , Transcription, Genetic
6.
EMBO Rep ; 15(5): 586-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24639557

ABSTRACT

Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F-ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva-to-adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Larva/physiology , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Respiration/drug effects , Animals , Cells, Cultured , Cold Temperature , Drosophila Proteins/genetics , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , Guanosine Diphosphate/pharmacology , Membrane Transport Proteins/genetics , Oligomycins/pharmacology , Oxygen Consumption , Palmitates/metabolism , Thermogenesis , Uncoupling Agents/pharmacology
7.
J Biol Chem ; 289(11): 7448-59, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24469456

ABSTRACT

The CG18317 gene (drim2) is the Drosophila melanogaster homolog of the Saccharomyces cerevisiae Rim2 gene, which encodes a pyrimidine (deoxy)nucleotide carrier. Here, we tested if the drim2 gene also encodes for a deoxynucleotide transporter in the fruit fly. The protein was localized to mitochondria. Drosophila S2R(+) cells, silenced for drim2 expression, contained markedly reduced pools of both purine and pyrimidine dNTPs in mitochondria, whereas cytosolic pools were unaffected. In vivo drim2 homozygous knock-out was lethal at the larval stage, preceded by the following: (i) impaired locomotor behavior; (ii) decreased rates of oxygen consumption, and (iii) depletion of mtDNA. We conclude that the Drosophila mitochondrial carrier dRIM2 transports all DNA precursors and is essential to maintain mitochondrial function.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Mitochondria/metabolism , Nucleotide Transport Proteins/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Biological Transport , DNA, Mitochondrial/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Gene Expression Profiling , Molecular Sequence Data , Nucleotide Transport Proteins/genetics , Nucleotides/chemistry , Oligonucleotide Array Sequence Analysis , Oxygen Consumption , RNA Interference , RNA, Double-Stranded/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Homology, Amino Acid
8.
Nat Genet ; 43(3): 259-63, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21278747

ABSTRACT

Although mutations in CYTB (cytochrome b) or BCS1L have been reported in isolated defects of mitochondrial respiratory chain complex III (cIII), most cIII-defective individuals remain genetically undefined. We identified a homozygous nonsense mutation in the gene encoding tetratricopeptide 19 (TTC19) in individuals from two families affected by progressive encephalopathy associated with profound cIII deficiency and accumulation of cIII-specific assembly intermediates. We later found a second homozygous nonsense mutation in a fourth affected individual. We demonstrated that TTC19 is embedded in the inner mitochondrial membrane as part of two high-molecular-weight complexes, one of which coincides with cIII. We then showed a physical interaction between TTC19 and cIII by coimmunoprecipitation. We also investigated a Drosophila melanogaster knockout model for TTC19 that showed low fertility, adult-onset locomotor impairment and bang sensitivity, associated with cIII deficiency. TTC19 is a putative cIII assembly factor whose disruption is associated with severe neurological abnormalities in humans and flies.


Subject(s)
Electron Transport Complex III/deficiency , Membrane Proteins/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Nervous System Diseases/genetics , Adult , Animals , Brain/pathology , Codon, Nonsense , Drosophila melanogaster/genetics , Electron Transport Complex III/genetics , Female , Gene Knockdown Techniques , Humans , Male , Mitochondria/genetics , Nervous System Diseases/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...