Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 132(6): 1839-47, 2010 Feb 17.
Article in English | MEDLINE | ID: mdl-20092271

ABSTRACT

We report an investigation of complexes of the type M(2)(dmp)(4) (M = Mo, Cr; dmp = 2,6-dimethoxyphenyl) using resonance Raman (RR) spectroscopy, Cr isotopic substitution, and density functional theory (DFT) calculations. Assignment of the Mo-Mo stretching vibration in the Mo(2) species is straightforward, as evidenced by a single resonance-enhanced band at 424 cm(-1), consistent with an essentially unmixed metal-metal stretch, and overtones of this vibration. On the other hand, the Cr(2) congener has no obvious metal-metal stretching mode near 650-700 cm(-1), where empirical predictions based on the Cr-Cr distance as well as DFT calculations suggest that this vibration should appear if unmixed. Instead, three bands are observed at 345, 363, and 387 cm(-1) that (a) have relative RR intensities that are sensitive to the Raman excitation frequency, (b) exhibit overtones and combinations in the RR spectra, and (c) shift in frequency upon isotopic substitution ((50)Cr and (54)Cr). DFT calculations are used to model the vibrational data for the Mo(2) and Cr(2) systems. Both the DFT results and empirical predictions are in good agreement with experimental observations in the Mo(2) complex, but both, while mutually consistent, differ radically from experiment in the Cr(2) complex. Our experimental and theoretical results, especially the Cr isotope shifts, clearly demonstrate that the potential energy of the Cr-Cr stretching coordinate is distributed among several normal modes having both Cr-Cr and Cr-ligand character. The general significance of these results in interpreting spectroscopic observations in terms of the nature of metal-metal multiple bonding is discussed.


Subject(s)
Chromium/chemistry , Molybdenum/chemistry , Organometallic Compounds/chemistry , Quantum Theory , Absorption , Electrons , Isotopes , Models, Molecular , Molecular Conformation , Spectrum Analysis, Raman
2.
Inorg Chem ; 47(13): 5841-9, 2008 Jul 07.
Article in English | MEDLINE | ID: mdl-18540594

ABSTRACT

A new complex, Cp* 2Sm(tpy) ( 1, where Cp* = C 5Me 5, tpy = 2,2':6',2''-terpyridine) and its one-electron oxidized congener [Cp* 2Sm(tpy)]PF 6 ([ 1] (+)) have been synthesized and characterized with the aim of comparing their electronic and magnetic behavior to the known ytterbium analogues: Cp* 2Yb(tpy) ( 2) and [Cp* 2Yb(tpy)]OTf ([ 2] ( + )). These new samarium complexes have been characterized using single-crystal X-ray diffraction, (1)H NMR spectroscopy, cyclic voltammetry, optical spectroscopy, and bulk magnetic susceptibility measurements. All data for 1 indicate a Sm(III)-tpy* (-)[(4f) (5)-(pi*) (1)] ground-state electronic configuration similar to that found previously for 2 [(4f) (13)-(pi*) (1)]. Structural comparisons reveal that there are no significant changes in the overall geometries associated with the neutral and cationic samarium and ytterbium congeners aside from those anticipated based upon the lanthanide contraction. The redox potentials for the divalent Cp* 2Ln(THF) n precursors ( E 1/2(Sm (2+)) = -2.12 V, E 1/2(Yb (2+)) = -1.48 V) are consistent with established trends, the redox potentials (metal-based reduction and ligand-based oxidation) for 1 are nearly identical to those for 2. The correlation in the optical spectra of 1 and 2 is excellent, as expected for this ligand-radical based electronic structural assignment, but there does appear to be a red-shift ( approximately 400 cm (-1)) in all of the bands of 1 relative to those of 2 that suggests a slightly greater stabilization of the pi* level(s) in the samarium(III) complex compared to that in the ytterbium(III) complex. Similar spectroscopic overlap is observed for the monocationic complexes [ 1] (+) and [ 2] (+). Bulk magnetic susceptibility measurements for 1 reveal significantly different behavior than that of 2 due to differences in the electronic-state structure of the two metal ions. The implications of these differences in magnetic behavior are discussed.

3.
J Am Chem Soc ; 128(22): 7230-41, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16734477

ABSTRACT

A systematic study of the novel charge-transfer [(f)14-(pi)0-(f)14 --> (f)13-(pi)2-(f)13] electronic state found in 2:1 metal-to-ligand adducts of the type [(Cp)2Yb](BL)[Yb(Cp)2] [BL = tetra(2-pyridyl)pyrazine (tppz) (1), 6',6' '-bis(2-pyridyl)-2,2':4',4'':2'',2'''-quaterpyridine (qtp) (2), 1,4-di(terpyridyl)-benzene (dtb) (3), Cp = (C5Me5)] has been conducted with the aim of determining the effects of increased Yb-Yb separation on the magnetic and electronic properties of these materials. The neutral [(f)13-(pi)2-(f)13], cationic [(f)13-(pi)1-(f)13] and dicationic [(f)13-(pi)0-(f)13] states of these complexes were studied by cyclic voltammetry, UV-vis-NIR electronic absorption spectroscopy, NMR, X-ray crystallography, and magnetic susceptibility measurements. The spectroscopic and magnetic data for the neutral bimetallic complexes is consistent with an [(f)13(pi)2(f)13] ground-state electronic configuration in which each ytterbocene fragment donates one electron to give a singlet dianionic bridging ligand with two paramagnetic Yb(III) centers. The voltammetric data demonstrate that the electronic interaction in the neutral molecular wires 1-3, as manifested in the separation between successive metal reduction waves, is large compared to analogous transition metal systems. Electronic spectra for the neutral and monocationic bimetallic species are dominated by pi-pi and pi-pi transitions, masking the f-f bands that are expected to best reflect the electronic metal-metal interactions. However, these metal-localized transitions are observed when the electrons are removed from the bridging ligand via chemical oxidation to yield the dicationic species, and they suggest very little electronic interaction between metal centers in the absence of pi electrons on the bridging ligands. Analysis of the magnetic data reveals that the qtp complex displays antiferromagnetic coupling of the type Yb(alpha)(alphabeta)Yb(beta) at approximately 13 K.

4.
Inorg Chem ; 44(16): 5719-27, 2005 Aug 08.
Article in English | MEDLINE | ID: mdl-16060623

ABSTRACT

The reaction between Os(2)(OAc)(4)Cl(2) and Hap (Hap is 2-anilinopyridine) under prolonged refluxing conditions resulted in an Os(III)(2) compound, Os(2)(ap)(4)Cl(2) (1), that can be crystallized as either the cis-(2,2) isomer from a CH(3)OH-CH(2)Cl(2) solution or the (3,1) isomer from a hexanes-CH(2)Cl(2) solution. Compound 1 undergoes facile reactions with LiC(2)Y to yield a series of Os(2)(ap)(4)(C(2)Y)(2) compounds with Y as Ph (2), ferrocenyl (3), SiMe(3) (4), and C(2)SiMe(3) (5). X-ray diffraction study of compound 2 reveals solvent-dependent isomerism similar to that of the parent compound 1. Compound 1 has Os-Os distances of 2.3937(8) and 2.3913(8) Angstroms for the cis-(2,2) and (3,1) isomers, respectively, and is paramagnetic (S = 1). Both the ethynyl derivatives 2-4 and butadiynyl derivative 5 are diamagnetic and have Os-Os distances of 2.456(1), 2.471(1), and 2.481(1) Angstroms for the cis-(2,2) and (3,1) isomers of 2 and (3,1) isomer of 4, respectively. Compounds 1-5 exhibit multiple one-electron redox couples in their cyclic voltammograms, including a reversible Os(2)(8+/7+) couple for 2. Resonance Raman spectra of both compounds 1 and 2 are reported.

5.
J Am Chem Soc ; 127(2): 682-9, 2005 Jan 19.
Article in English | MEDLINE | ID: mdl-15643893

ABSTRACT

Electronic absorption and resonance-enhanced Raman spectra for ketimido (azavinylidene) complexes of tetravalent uranium, (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) (R = Ph, Me, and CH(2)Ph), have been recorded. The absorption spectra exhibit four broad bands between 13 000 and 24 000 cm(-1). The highest-energy band is assigned to the ketimido-localized p( perpendicular)(N)-->pi(N=C) transition based on comparison to the spectra of (C(5)H(5))(2)Zr[-N=CPh(2)](2) and (C(5)Me(5))(2)Th[-N=CPh(2)](2). Upon excitation into any of these four absorption bands, the (C(5)Me(5))(2)U[-N=C(Ph)(R)](2) complexes exhibit resonance enhancement for several Raman bands attributable to vibrations of the ketimido ligands. Raman bands for both the symmetric and nominally asymmetric N=C stretching bands are resonantly enhanced upon excitation into the p( perpendicular)(N)-->pi(N=C) absorption bands, indicating that the excited state is localized on a single ketimido ligand. Raman excitation profiles for (C(5)Me(5))(2)U[-N=CPh(2)](2) confirm that at least one of the lower-energy electronic absorption bands (E(max) approximately 16300 cm(-1)) is a charge-transfer transition between the U(IV) center and the ketimido ligand(s). The observations of both charge-transfer transitions and resonance enhancement of Raman vibrational bands are exceedingly rare for tetravalent actinide complexes and reflect the strong bonding interactions between the uranium 5f/6d orbitals and those on the ketimido ligands.

6.
Chem Commun (Camb) ; (18): 2336-7, 2003 Sep 21.
Article in English | MEDLINE | ID: mdl-14518902

ABSTRACT

(C5Me5)2Yb x OEt2 reacts with terpyridine and tetrapyridinylpyrazine to afford new mixed-valent systems.

7.
Inorg Chem ; 42(18): 5551-9, 2003 Sep 08.
Article in English | MEDLINE | ID: mdl-12950203

ABSTRACT

The novel charge-transfer ground state found in alpha,alpha'-diimine adducts of ytterbocene (C(5)Me(5))(2)Yb(L) [L = 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen)] in which an electron is spontaneously transferred from the f(14) metal center into the lowest unoccupied (pi*) molecular orbital (LUMO) of the diimine ligand to give an f(13)-L(*)(-) ground-state electronic configuration has been characterized by cyclic voltammetry, UV-vis-near-IR electronic absorption, and resonance Raman spectroscopies. The voltammetric data demonstrate that the diimine ligand LUMO is stabilized and the metal f orbital is destabilized by approximately 1.0 V each upon complexation for both bpy and phen adducts. The separation between the ligand-based oxidation wave (L(0/-)) and the metal-based reduction wave (Yb(3+/2+)) in the ytterbocene adducts is 0.79 V for both bpy and phen complexes. The UV-vis-near-IR absorption spectroscopic data for both the neutral adducts and the one-electron-oxidized complexes are consistent with those reported recently, but previously unreported bands in the near-IR have been recorded and assigned to ligand (pi*)-to-metal (f orbital) charge-transfer (LMCT) transitions. These optical electronic excited states are the converse of the ground-state charge-transfer process (e.g., f(13)-L(*-) <--> f(14)-L(0)). These new bands occur at approximately 5000 cm(-1) in both adducts, consistent with predictions from electrochemical data, and the spacings of the resolved vibronic bands in these transitions are consistent with the removal of an electron from the ligand pi* orbital. The unusually large intensity observed in the f --> f intraconfiguration transitions for the neutral phenanthroline adduct is discussed in terms of an intensity-borrowing mechanism involving the low-energy LMCT states. Raman vibrational data clearly reveal resonance enhancement for excitation into the low-lying pi* --> pi* ligand-localized excited states, and comparison of the vibrational energies with those reported for alkali-metal-reduced diimine ligands confirms that the ligands in the adducts are reduced radical anions. Differences in the resonance enhancement pattern for the modes in the bipyridine adduct with excitation into different pi* --> pi* levels illustrate the different nodal structures that exist in the various low-lying pi* orbitals.

8.
Inorg Chem ; 41(26): 6973-85, 2002 Dec 30.
Article in English | MEDLINE | ID: mdl-12495335

ABSTRACT

Molybdenum-oxo ions of the type [Mo(IV)OL(4)Cl](+) (L = CNBu(t), PMe(3), (1)/(2)Me(2)PCH(2)CH(2)PMe(2)) have been studied by X-ray crystallography, vibrational spectroscopy, and polarized single-crystal electronic absorption spectroscopy (300 and ca. 20 K) in order to investigate the effects of the ancillary ligand geometry on the properties of the MotriplebondO bond. The idealized point symmetries of the [Mo(IV)OL(4)Cl](+) ions were established by X-ray crystallographic studies of the salts [MoO(CNBu(t)())(4)Cl][BPh(4)] (C(4)(v)), [MoO(dmpe)(2)Cl]Cl.5H(2)O (C(2)(v)), and [MoO(PMe(3))(4)Cl][PF(6)] (C(2)(v)()); the lower symmetries of the phosphine derivatives are the result of the steric properties of the phosphine ligands. The Motbd1;O stretching frequencies of these ions (948-959 cm(-)(1)) are essentially insensitive to the nature and geometry of the equatorial ligands. In contrast, the electronic absorption bands arising from the nominal d(xy)() --> d(xz), d(yz) (n --> pi(MoO)) ligand-field transition exhibit a large dependence on the geometry of the equatorial ligands. Specifically, the electronic spectrum of [MoO(CNBu(t)())(4)Cl](+) exhibits a single (1)[n --> pi(xz)(,)(yz)] band, whereas the spectra of both [MoO(dmpe)(2)Cl](+) and [MoO(PMe(3))(4)Cl](+) reveal separate (1)[n --> pi(xz)] and (1)[n --> pi(yz)] bands. A general theoretical model of the n --> pi state energies of structurally distorted d(2) M(triplebondE)L(4)X chromophores is developed in order to interpret the electronic spectra of the phosphine derivatives. Analysis of the n --> pi transition energies using this model indicates that the d(xz) and d(yz) pi(MotriplebondO) orbitals are nondegenerate for the C(2)(v)-symmetry ions and the n --> pi(xz) and n --> pi(yz) excited states are characterized by different two-electron terms. These effects lead to a significant redistribution of intensity between certain spin-allowed and spin-forbidden absorption bands. The applicability of this model to the excited states produced by delta --> pi and pi --> delta symmetry electronic transitions of other chromophores is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...