Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 850: 157700, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35926618

ABSTRACT

Understanding the transport and fate of semi-volatile organic compounds (SVOCs) such as phthalates in indoor environments is fundamental for quantifying levels of human exposure and preventing adverse health effects. In this context, the partition coefficient of phthalates between indoor built materials and/or consumer goods and the surrounding atmosphere represents a key parameter for determining concentration distributions. Partition coefficients are also of fundamental importance for describing degradation phenomena associated with plasticiser loss from polymeric materials. However, this key parameter has only been determined for a limited number of systems and environmental conditions. Here, we assess the partitioning behaviour of the diethyl phthalate (DEP) plasticiser in cellulose acetate (CA)-based materials for the first time, determining the effects of temperature and plasticiser composition on equilibrium distributions at temperatures between 20 and 80 °C and using CA samples with DEP contents ranging from 6 to 22 wt%. Additionally, we propose a model to describe and quantify the effect of temperature and plasticiser composition, with model parameters being estimated using non-linear regression and measurements from 130 distinct experiments. Finally, we assess the suitability of our developed model to simulate the migration of DEP from CA-based materials.


Subject(s)
Air Pollution, Indoor , Phthalic Acids , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Cellulose/analogs & derivatives , Humans , Phthalic Acids/analysis , Plasticizers/analysis , Temperature
2.
Polymers (Basel) ; 15(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36616384

ABSTRACT

Systematic condition and analytical surveys were carried out on Zoe Leonard's (b. 1961) Mouth Open, Teeth Showing 2000, an installation artwork in Tate's collection consisting of 162 children's dolls. The dolls were manufactured at various points within the 20th century and encompass several potentially problematic synthetic polymers found in modern and contemporary museum collections. To explore the doll materials and conservation condition, a multi-analytical approach was used to identify key synthetic polymer types and additives present, including portable and bench analytical techniques. Challenging degradation phenomena associated with different types of doll have been discussed and related to their material composition, which has helped our understanding of the conservation challenges inherent to this contemporary artwork.

3.
Chemosphere ; 285: 131414, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34265716

ABSTRACT

The knowledge of the partitioning behaviour of semi-volatile organic compounds (SVOCs), such as phthalates, between different materials and their surrounding air is of extreme importance for quantifying levels of human exposure to these compounds, which have been associated with adverse health effects. Phthalates' partitioning behaviour also represents a key property for modelling and assessing polymer degradation mechanisms associated with plasticiser loss. However, the characterisation of phthalates partitioning behaviour has been reported only for a limited number of compounds, mainly involving di-2-ethylhexyl phthalate (DEHP), di-isononyl phthalate (DINP) and di-isodecyl phtahalate (DIDP), while the characterisation of diethyl phthalate (DEP) partitioning has been overlooked. As one of the first plasticisers employed in the production of semi-synthetic plastics produced industrially in the late 19th and early 20th century, DEP plays an important role for understanding stability issues associated with historically significant artefacts in museum collections and archives. Here we show that the partitioning behaviour of DEP between borosilicate glass and aluminum surfaces and their surrounding air can be described by an exponential function of temperature, presenting a model to describe this relationship for the first time. Model parameters are estimated using nonlinear regression from experimental measurements acquired using 109 samples which have been equilibrated at different temperatures between 20 and 80 °C in sealed environments. Measured partition coefficients have been predicted accurately by our proposed model. The knowledge of DEP equilibrium distribution between adsorptive surfaces and neighbouring environments will be relevant for developing improved mathematical descriptions of degradation mechanisms related to plasticiser loss.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Volatile Organic Compounds , Aluminum , Humans , Plasticizers
4.
Carbohydr Polym ; 267: 118185, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119153

ABSTRACT

The conservation of cellulose acetate plastics in museum collections presents a significant challenge, due to the material's instability. Several studies have led to an understanding of the role of relative humidity (RH) and temperature in the decay process. It is well established that a major decay mechanism in cellulose acetate museum objects is the loss of plasticiser, and that the main decay mechanism of the polymer chain involves hydrolysis reactions. This leads to the loss of sidechain groups and the breakdown of the main polymer backbone. However, interactions between these decay mechanisms, specifically the way in which the loss of plasticiser can modify the interaction between cellulose acetate and water, has not yet been investigated. This research addresses the role of RH, studying the sorption and diffusion of water in cellulose acetate and how this interaction can be affected by plasticiser concentration using Dynamic Vapour Sorption (DVS).


Subject(s)
Cellulose/analogs & derivatives , Diffusion , Organophosphates/chemistry , Phthalic Acids/chemistry , Plasticizers/chemistry , Water/chemistry , Adsorption , Cellulose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...