Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(46): 70262-70268, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35589892

ABSTRACT

Metals (trace elements and rare earth elements, REEs) were analysed by inductively coupled plasma-mass spectrometry in blood, the liver, the kidney and muscle of ex situ spotted dogfish (Scyliorhinus stellaris). The controlled environment in which these elasmobranchs were hosted allowed to assess a baseline level of metals in the different organs since exposure via water and food can be easily monitored. The highest arsenic, chromium, copper, and iron values were found in the liver, cobalt in the kidney, and cadmium and rubidium in muscle. The highest total trace elements content was found in the trend liver (75 mg kg-1) > blood (33 mg kg-1) > muscle (31 mg kg-1) > kidney (10 mg kg-1), while the ΣREEs was the liver (30 µg kg-1) > muscle (15 µg kg-1) > kidney (13 µg kg-1) > blood (4.1 µg kg-1). Between REEs, the most represented element was scandium. Significant differences in the concentration of metals among organs were observed for almost all elements. Nonessential elements were generally lower and essential elements higher in the examined specimens compared to wild elasmobranchs, suggesting a close relationship between a balanced diet and animal welfare.


Subject(s)
Arsenic , Elasmobranchii , Metals, Rare Earth , Trace Elements , Animals , Bioaccumulation , Cadmium , Chromium , Cobalt , Copper , Dogfish , Iron , Metals , Rubidium , Scandium , Water
2.
Biol Trace Elem Res ; 196(1): 262-271, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31741203

ABSTRACT

The Indo-Pacific lionfish is a saltwater fish that inhabits the Red Sea waters and the Indian and Pacific oceans; it is an invasive species in the western Atlantic and was recently introduced into the local diet in the USA, Central and South America, and the Caribbean with the aim of controlling the invasion of this species. Due to its predatory nature, it tends to bioaccumulate metals and other contaminants via the marine food web and could thus constitute a suitable species for monitoring aquatic ecosystems. The presence and distribution of 23 trace elements and 16 rare earth elements (REEs) were investigated by inductively coupled plasma-mass spectrometry (ICP-MS) in the muscle, liver, and kidneys of lionfish from Cuba. Significant differences in metal concentrations were found in the different fish organs. The liver and kidneys registered the highest concentrations for most trace elements and for ΣREE, thus demonstrating that they are effective bioindicators of possible pollution on the environment in which fish live, and assuming great importance in the choice of early biomonitoring. Trace element concentrations in the muscle are instead of crucial interest for consumer safety. The limits set by EU regulations and Cuban guidelines for Cd and Pb in fish muscle were never exceeded, suggesting that lionfish from Cuba could therefore represent a good source of minerals and proteins for the local population. Graphical abstract.


Subject(s)
Kidney/chemistry , Liver/chemistry , Metals, Rare Earth/metabolism , Muscles/chemistry , Trace Elements/metabolism , Animals , Bioaccumulation , Cuba , Environmental Monitoring , Kidney/metabolism , Liver/metabolism , Metals, Rare Earth/analysis , Muscles/metabolism , Perciformes , Trace Elements/analysis
3.
Sci Total Environ ; 678: 627-631, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31078853

ABSTRACT

Rare earth elements (REEs), also called lanthanides, are emerging contaminants worldwide, due to their unique physical and chemical characteristics that make them essential in a variety of industrial applications. However, there is still a gap in the knowledge of occurrence and accumulation of REEs in biota, and no investigations have yet been performed in penguin feathers, which have already been widely utilized as a non-invasive tool for the biomonitoring of trace elements. The concentrations of 16 REEs were investigated in a colony of Humboldt penguins (Spheniscus humboldti) housed at the Acquario di Cattolica (Italy). Multielement determination of REEs was performed by an Inductively Coupled Plasma-Mass Spectrometer after a microwave digestion of feathers. As this colony lives indoors in a controlled environment, it was the ideal choice for studying lanthanide occurrence in penguin feathers. Since there is a strict link between metal levels in feathers and the diet of penguins, their food (capelin) was also tested for REEs. Chondrite normalized values revealed the same pattern for REEs in feathers and fish, but REE concentrations were an order of magnitude higher in penguin feathers, demonstrating the suitability of this tissue as a bioindicator of REEs.


Subject(s)
Environmental Biomarkers , Metals, Rare Earth/analysis , Spheniscidae/metabolism , Animals , Animals, Zoo/metabolism , Feathers/chemistry , Female , Male , Metals, Rare Earth/metabolism
4.
Sci Total Environ ; 650(Pt 2): 1734-1739, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30273732

ABSTRACT

Avian feathers have the potential to accumulate trace elements originating from contaminated food and polluted environments. In fact, in feathers, metals bind to keratin, a sulphur-containing protein for which several metals have a strong affinity. Here, the concentrations of 18 essential and non-essential elements were investigated in a Humboldt penguin (Spheniscus humboldti) colony housed at the Acquario di Cattolica (Italy). This species is listed as vulnerable in the Red List of the International Union for Conservation of Nature. According to the literature, there is usually a link between metal levels in the diet of birds and levels detected in their feathers. Thus, metals were also determined in the penguins' food (capelin, Mallotus villosus). We hypothesize that the controlled conditions in which birds are kept in captivity, and the homogeneous diet that they follow could allow a better understanding of metal bioaccumulation (such as mercury) or bio-dilution (such as arsenic) in the marine food chain, indicated by penguins' feathers. Moreover, comparisons with our previous investigations performed on an ex-situ African penguin (Spheniscus demersus) colony suggest that penguins living indoors have lower body burden of metals than those living outdoors. Indeed, environmental contaminants usually found in areas subjected to anthropogenic impact, where zoos and aquaria are often located, are not accumulated to levels of concern.


Subject(s)
Environmental Monitoring/methods , Feathers/chemistry , Metals, Heavy/metabolism , Spheniscidae/metabolism , Water Pollutants, Chemical/metabolism , Animals , Animals, Zoo/metabolism , Environmental Biomarkers , Female , Italy , Male
5.
Behav Processes ; 128: 83-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27102762

ABSTRACT

Penguins produce contact calls to maintain social relationships and group cohesion. Such vocalisations have recently been demonstrated to encode individual identity information in the African penguin. Using a source-filter theory approach, we investigated whether acoustic cues of individuality can also be found in other Spheniscus penguins and the acoustic features of contact calls have diverged within this genus. We recorded vocalisations from two ex-situ colonies of Humboldt penguin and Magellanic penguin (sympatric and potentially interbreeding in the wild) and one ex-situ group of African penguins (allopatric although capable of interbreeding with the other two species in captivity). We measured 14 acoustic parameters from each vocalisation. These included temporal (duration), source-related (fundamental frequency, f0), and filter-related (formants) parameters. They were then used to carry out a series of stepwise discriminant function analyses (with cross-validation) and General Linear Model comparisons. We showed that contact calls allow individual discrimination in two additional species of the genus Spheniscus. We also found that calls can be classified according to species in a manner far greater than that attributable by chance, even though there is limited genetic distance among African, Humboldt, and Magellanic penguins. Our results provide further evidence that the source-filter theory is a valuable framework for investigating the biologically meaningful information contained in bird vocalisations. Our findings also provide novel insights into penguin vocal communication and suggest that contact calls of the penguin family are affected by selection for individuality.


Subject(s)
Individuality , Spheniscidae/physiology , Vocalization, Animal , Acoustics , Animal Identification Systems , Animals , Female , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...