Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 15(1): 800-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26328444

ABSTRACT

In previous works, we developed nanocapsules and nanoemulsions containing the tea tree oil. The aim of this work was to prepare and characterize hydrogels containing these nanocarriers, and to evaluate their in vivo efficacy in protecting skin damage induced by UVB and cutaneous wound healing. Hydrogels were prepared using Carbopol Ultrez and their physicochemical characteristics were evaluated: macroscopic analysis, pH, spreadability and rheological properties. The in vivo antiedematogenic effect was evaluated by ear thickness measurement after UVB-irradiation. In order to evaluate healing action of hydrogels, we investigated the regression of the cutaneous lesion in rats. Hydrogels showed homogeneous aspect and pH values between 5.6-5.8 and a non-Newtonian behavior. The presence of nanocapsules and nanoemulsions in hydrogels did not change their spreadability profile. The inclusion of tea tree oil in the nanocapsules and nanoemulsions allowed reducing the edema induced by UVB exposure. Hydrogel containing nanocapsules presented a higher reduction of the wound area compared to the hydrogel containing nanoemulsions and hydrogel containing allantoin. This study shows the feasibility of obtained dermatological formulations containing the tea tree oil associated in nanostructured systems. These formulations represent a promising approach to topical treatment of inflammatory disorders and wound healing.


Subject(s)
Hydrogels/pharmacology , Nanocapsules/chemistry , Protective Agents/pharmacology , Skin/drug effects , Tea Tree Oil/pharmacology , Wound Healing/drug effects , Animals , Anti-Inflammatory Agents , Edema , Hydrogels/chemistry , Male , Protective Agents/chemistry , Rats , Rats, Wistar , Skin/injuries , Skin/physiopathology , Tea Tree Oil/chemistry
2.
Life Sci ; 96(1-2): 7-17, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24291256

ABSTRACT

AIMS: The aim of this study was to analyze if the pre-administration of anthocyanin on memory and anxiety prevented the effects caused by intracerebroventricular streptozotocin (icv-STZ) administration-induced sporadic dementia of Alzheimer's type (SDAT) in rats. Moreover, we evaluated whether the levels of nitrite/nitrate (NOx), Na(+),K(+)-ATPase, Ca(2+)-ATPase and acethylcholinesterase (AChE) activities in the cerebral cortex (CC) and hippocampus (HC) are altered in this experimental SDAT. MAIN METHODS: Male Wistar rats were divided in 4 different groups: control (CTRL), anthocyanin (ANT), streptozotocin (STZ) and streptozotocin+anthocyanin (STZ+ANT). After seven days of treatment with ANT (200mg/kg; oral), the rats were icv-STZ injected (3mg/kg), and four days later the behavior parameters were performed and the animals submitted to euthanasia. KEY FINDINGS: A memory deficit was found in the STZ group, but ANT treatment showed that it prevents this impairment of memory (P<0.05). Our results showed a higher anxiety in the icv-STZ group, but treatment with ANT showed a per se effect and prevented the anxiogenic behavior induced by STZ. Our results reveal that the ANT treatment (100µM) tested displaces the specific binding of [(3)H] flunitrazepam to the benzodiazepinic site of GABAA receptors. AChE, Ca(+)-ATPase activities and NOx levels were found to be increased in HC and CC in the STZ group, which was attenuated by ANT (P<0.05). STZ decreased Na(+),K(+)-ATPase activity and ANT was able to prevent these effects (P<0.05). SIGNIFICANCE: In conclusion, these findings demonstrated that ANT is able to regulate ion pump activity and cholinergic neurotransmission, as well as being able to enhance memory and act as an anxiolytic compound in animals with SDAT.


Subject(s)
Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Anthocyanins/therapeutic use , Brain/metabolism , Maze Learning/drug effects , Streptozocin/toxicity , Acetylcholinesterase/metabolism , Alzheimer Disease/chemically induced , Animals , Anthocyanins/pharmacology , Brain/drug effects , Glutathione/metabolism , Male , Maze Learning/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL