Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Future Microbiol ; : 1-13, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864708

ABSTRACT

Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.


[Box: see text].

2.
Int J Biol Macromol ; 270(Pt 1): 132379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754680

ABSTRACT

Hydrogels based on natural polysaccharides have demonstrated efficacy in epithelial recovery from cutaneous burn wounds. Here, we prepared a double-network hydrogel consisting of galactomannan (from Cassia grandis seeds) and κ-carrageenan (commercially sourced), cross-linked with CaCl2, as a matrix for immobilizing lactoferrin and/or Cramoll, aiming at its applicability as dressings for second-degree burn wounds. The formulations obtained [H - hydrogel, HL - hydrogel + lactoferrin, HC - hydrogel + Cramoll and HLC - hydrogel + lactoferrin + Cramoll] were analyzed rheologically as well as in terms of their stability (pH, color, microbial contamination) for 90 days. The burn was created with an aluminum bar (97 ± 3 °C) in the dorsal region of Wistar rats and subsequently treated with hydrogels (H, HL, HC, HLC) and control saline solution (S). The burn was monitored for 3, 7 and 14 days to evaluate the efficacy of the hydrogels in promoting wound healing. The hydrogels did not reveal significant pH or microbiological changes; there was an increase in brightness and a reduction in opacity for H. The rheological analysis confirmed the gel-like viscoelastic signature of the systems without substantial modification of the basic rheological characteristics, however HLC proved to be more rigid, due to rheological synergy when combining protein biomolecules. Macroscopic analyses confirmed centripetal healing with wound contraction: S < H < HC < HL < HLC. Histopathological analyses showed that hydrogel-treated groups reduced inflammation, tissue necrosis and fibrosis, while promoting re-epithelialization with focal acanthosis, especially in HLC due to a positive synergistic effect, indicating its potential as a promising therapy in the repair of burns.


Subject(s)
Burns , Carrageenan , Galactose , Hydrogels , Mannans , Rats, Wistar , Wound Healing , Hydrogels/chemistry , Mannans/chemistry , Mannans/pharmacology , Animals , Burns/therapy , Burns/drug therapy , Carrageenan/chemistry , Wound Healing/drug effects , Rats , Galactose/analogs & derivatives , Galactose/chemistry , Male , Lactoferrin/chemistry , Rheology
3.
Mol Cell Endocrinol ; 588: 112223, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38556160

ABSTRACT

Maternal malnutrition can alter developmental biology, programming health and disease in offspring. The increase in sugar consumption during the peripubertal period, a worldwide concern, also affects health through adulthood. Studies have shown that maternal exposure to a low protein diet (LPD) is associated with an increase in prostate disease with aging. However, the combined effects of maternal LPD and early postnatal sugar consumption on offspring prostate disorders were not investigated. The effects on aging were evaluated using a maternal gestational model with lactational LPD (6% protein) and sugar consumption (10%) from postnatal day (PND) 21-90, associating the consequences on ventral prostate (VP) rats morphophysiology on PND540. An increase was shown in mast cells and in the VP of the CTR + SUG and Gestational and Lactational Low Protein (GLLP) groups. In GLLP + SUG, a significant increase was shown in TGF-ß1 expression in both the systemic and intra-prostatic forms, and SMAD2/3p had increased. The study identified maternal LPD and sugar consumption as risk factors for prostatic homeostasis in senility, activating the TGFß1-SMAD2/3 pathway, a signaling pathway with potential markers for prostatic disorders.


Subject(s)
Malnutrition , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects , Prostate , Prostatic Diseases , Animals , Male , Female , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prostatic Diseases/pathology , Prostatic Diseases/etiology , Prostatic Diseases/metabolism , Malnutrition/complications , Prostate/metabolism , Prostate/pathology , Rats , Inflammation/pathology , Inflammation/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Diet, Protein-Restricted/adverse effects , Smad2 Protein/metabolism , Rats, Wistar , Smad3 Protein/metabolism , Smad3 Protein/genetics , Signal Transduction , Animals, Newborn , Mast Cells/metabolism
4.
Biofouling ; 40(2): 165-176, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38425095

ABSTRACT

Dual-species biofilms formed by Candida albicans and Staphylococcus aureus have high virulence and drug resistance. In this context, biosurfactants produced by Pseudomonas aeruginosa have been widely studied, of which a new derivative (RLmix_Arg) stands out for possible application in formulations. The objective of this study was to evaluate the antibiofilm activity of RLmix_Arg, both alone and incorporated in a gel prepared with Pluronic F-127, against dual-species biofilms of fluconazole-resistant C. albicans (FRCA) and methicillin-resistant S. aureus (MRSA) in impregnated catheters. Broth microdilution tests, MTT reduction assays of mature biofilms, impregnation of RLmix_Arg and its gel in peripheral venous catheters, durability tests and scanning electron microscopy (SEM) were performed. RLmix_Arg showed antimicrobial activity against Candida spp. and S. aureus, by reducing the cell viability of mixed biofilms of FRCA and MRSA, and preventing their formation in a peripheral venous catheter. The incorporation of this biosurfactant in the Pluronic F-127 gel considerably enhanced its antibiofilm activity. Thus, RLmix_Arg has potential application in gels for impregnation in peripheral venous catheters, helping to prevent development of dual-species biofilms of FRCA and MRSA.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Fluconazole/pharmacology , Candida albicans , Staphylococcus aureus , Methicillin Resistance , Biofilms , Poloxamer/pharmacology , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Catheters , Anti-Bacterial Agents/pharmacology
5.
J Med Microbiol ; 73(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38385528

ABSTRACT

Introduction. Candida albicans and Staphylococcus aureus are recognized for their development of resistance and biofilm formation. New therapeutic alternatives are necessary in this context.Hypothesis. Etomidate shows potential application in catheters against mixed biofilms of fluconazole-resistant C. albicans and methicillin-resistant S. aureus (MRSA).Aim. The present study aimed to evaluate the activity of etomidate against mixed biofilms of fluconazole-resistant C. albicans and MRSA.Methodology. The action of etomidate against mature biofilms was verified through the evaluation of biomass and cell viability, and its ability to prevent biofilm formation in peripheral venous catheters was determined based on counts of colony forming units (c.f.u.) and confirmed by morphological analysis through scanning electron microscopy (SEM).Results. Etomidate generated a reduction (P<0.05) in biomass and cell viability starting from a concentration of 250 µg ml-1. In addition, it showed significant ability to prevent the formation of mixed biofilms in a peripheral venous catheter, as shown by a reduction in c.f.u. SEM revealed that treatment with etomidate caused substantial damage to the fungal cells.Conclusion. The results showed the potential of etomidate against polymicrobial biofilms of fluconazole-resistant C. albicans and MRSA.


Subject(s)
Etomidate , Methicillin-Resistant Staphylococcus aureus , Fluconazole/pharmacology , Candida albicans , Antifungal Agents/pharmacology , Etomidate/pharmacology , Biofilms , Microbial Sensitivity Tests
6.
Future Microbiol ; 19: 91-106, 2024 01.
Article in English | MEDLINE | ID: mdl-38294293

ABSTRACT

Background: Staphylococcus aureus is a human pathogen responsible for high mortality rates. The development of new antimicrobials is urgent. Materials & methods: The authors evaluated the activity of hydralazine along with its synergism with other drugs and action on biofilms. With regard to action mechanisms, the authors evaluated cell viability, DNA damage and molecular docking. Results: MIC and minimum bactericidal concentration values ranged from 128 to 2048 µg/ml. There was synergism with oxacillin (50%) and vancomycin (25%). Hydralazine reduced the viability of biofilms by 50%. After exposure to hydralazine 2× MIC, 58.78% of the cells were unviable, 62.07% were TUNEL positive and 27.03% presented damage in the comet assay (p < 0.05). Hydralazine showed affinity for DNA gyrase and TyrRS. Conclusion: Hydralazine is a potential antibacterial.


Staphylococcus aureus is a bacterium that can cause infection. Infections of S. aureus are becoming difficult to treat, but developing new drugs is a challenge. Repurposing them may be easier. This study looks at the possibility of using hydralazine, a type of medicine used to treat high blood pressure, against S. aureus. The authors found that hydralazine can kill S. aureus and can be used with other antibiotics, including oxacillin and vancomycin. Hydralazine interferes with important processes for the multiplication and survival of this bacterium. These results are preliminary but encouraging. Further studies are needed to confirm the use of hydralazine as a new treatment for S. aureus infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Methicillin , Methicillin Resistance , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests
8.
J Med Microbiol ; 72(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37801011

ABSTRACT

Species of the genus Candida, characterized as commensals of the human microbiota, are opportunistic pathogens capable of generating various types of infections with high associated costs. Considering the limited pharmacological arsenal and the emergence of antifungal-resistant strains, the repositioning of drugs is a strategy used to search for new therapeutic alternatives, in which minocycline and doxycycline have been evaluated as potential candidates. Thus, the objective was to evaluate the in vitro antifungal activity of two tetracyclines, minocycline and doxycycline, and their possible mechanism of action against fluconazole-resistant strains of Candida spp. The sensitivity test for antimicrobials was performed using the broth microdilution technique, and the pharmacological interaction with fluconazole was also analysed using the checkerboard method. To analyse the possible mechanisms of action, flow cytometry assays were performed. The minimum inhibitory concentration obtained was 4-427 µg ml-1 for minocycline and 128-512 µg ml-1 for doxycycline, and mostly indifferent and additive interactions with fluconazole were observed. These tetracyclines were found to promote cellular alterations that generated death by apoptosis, with concentration-dependent reactive oxygen species production and reduced cell viability. Therefore, minocycline and doxycycline present themselves as promising study molecules against Candida spp.


Subject(s)
Antifungal Agents , Fluconazole , Humans , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Candida , Minocycline/pharmacology , Doxycycline/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Fungal
9.
J Mycol Med ; 33(4): 101431, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37666030

ABSTRACT

Fungal infections caused by Cryptococcus spp. pose a threat to health, especially in immunocompromised individuals. The available arsenal of drugs against cryptococcosis is limited, due to their toxicity and/or lack of accessibility in low-income countries, requiring more therapeutic alternatives. Selective serotonin reuptake inhibitors (SSRIs), through drug repositioning, are a promising alternative to broaden the range of new antifungals against Cryptococcus spp. This study evaluates the antifungal activity of three SSRIs, sertraline, paroxetine, and fluoxetine, against Cryptococcus spp. strains, as well as assesses their possible mechanism of action. Seven strains of Cryptococcus spp. were used. Sensitivity to SSRIs, fluconazole, and itraconazole was evaluated using the broth microdilution assay. The interactions resulting from combinations of SSRIs and azoles were investigated using the checkerboard assay. The possible action mechanism of SSRIs against Cryptococcus spp. was evaluated through flow cytometry assays. The SSRIs exhibited in vitro antifungal activity against Cryptococcus spp. strains, with minimum inhibitory concentrations ranging from 2 to 32 µg/mL, and had synergistic and additive interactions with azoles. The mechanism of action of SSRIs against Cryptococcus spp. involved damage to the mitochondrial membrane and increasing the production of reactive oxygen species, resulting in loss of cellular viability and apoptotic cell death. Fluoxetine also was able to cause significant damage to yeast DNA. These findings demonstrate the in vitro antifungal potential of SSRIs against Cryptococcus spp. strains.


Subject(s)
Cryptococcus neoformans , Cryptococcus , Humans , Antifungal Agents/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Fluoxetine/pharmacology , Fluconazole/pharmacology , Azoles , Microbial Sensitivity Tests
10.
J Med Microbiol ; 72(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-37707372

ABSTRACT

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Oxacillin , Oxacillin/pharmacology , Vitamin K 3/pharmacology , Methicillin , Staphylococcus aureus , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Biofilms
11.
Front Plant Sci ; 14: 1124768, 2023.
Article in English | MEDLINE | ID: mdl-37465383

ABSTRACT

Introduction: Mycosphaerella leaf disease (MLD) is one of the most prevalent foliar diseases of Eucalyptus globulus plantations around the world. Since resistance management strategies have not been effective in commercial plantations, breeding to develop more resistant genotypes is the most promising strategy. Available genomic information can be used to detect genomic regions associated with resistance to MLD, which could significantly speed up the process of genetic improvement. Methods: We investigated the genetic basis of MLD resistance in a breeding population of E. globulus which was genotyped with the EUChip60K SNP array. Resistance to MLD was evaluated through resistance of the juvenile foliage, as defoliation and leaf spot severity, and through precocity of change to resistant adult foliage. Genome-wide association studies (GWAS) were carried out applying four Single-SNP models, a Genomic Best Linear Unbiased Prediction (GBLUP-GWAS) approach, and a Single-step genome-wide association study (ssGWAS). Results: The Single-SNP (model K) and GBLUP-GWAS models detected 13 and 16 SNP-trait associations in chromosomes 2, 3 y 11; whereas the ssGWAS detected 66 SNP-trait associations in the same chromosomes, and additional significant SNP-trait associations in chromosomes 5 to 9 for the precocity of phase change (proportion of adult foliage). For this trait, the two main regions in chromosomes 3 and 11 were identified for the three approaches. The SNPs identified in these regions were positioned near the key miRNA genes, miR156.5 and miR157.4, which have a main role in the regulation of the timing of vegetative change, and also in the response to environmental stresses in plants. Discussion: Our results demonstrated that ssGWAS was more powerful in detecting regions that affect resistance than conventional GWAS approaches. Additionally, the results suggest a polygenic genetic architecture for the heteroblastic transition in E. globulus and identified useful SNP markers for the development of marker-assisted selection strategies for resistance to MLD.

12.
J Med Microbiol ; 72(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36762524

ABSTRACT

Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.


Subject(s)
Candida , Candidiasis , Humans , Sertraline/pharmacology , Sertraline/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidiasis/drug therapy , Biofilms , Microbial Sensitivity Tests , Candida albicans
13.
Probiotics Antimicrob Proteins ; 15(5): 1221-1233, 2023 10.
Article in English | MEDLINE | ID: mdl-35995908

ABSTRACT

The emergence of antibiotic resistance poses a serious and challenging threat to healthcare systems, making it imperative to discover novel therapeutic options. This work reports the isolation and characterization of a thermostable trypsin inhibitor from chia (Salvia hispanica L.) seeds, with antibacterial activity against Staphylococcus aureus sensitive and resistant to methicillin. The trypsin inhibitor ShTI was purified from chia seeds through crude extract heat treatment, followed by affinity and reversed-phase chromatography. Tricine-SDS-PAGE revealed a single glycoprotein band of ~ 11 kDa under nonreducing conditions, confirmed by mass spectrometry analysis (11.558 kDa). ShTI was remarkably stable under high temperatures (100 °C; 120 min) and a broad pH range (2-10; 30 min). Upon exposure to DTT (0.1 M; 120 min), ShTI antitrypsin activity was partially lost (~ 38%), indicating the participation of disulfide bridges in its structure. ShTI is a competitive inhibitor (Ki = 1.79 × 10-8 M; IC50 = 1.74 × 10-8 M) that forms a 1:1 stoichiometry ratio for the ShTI:trypsin complex. ShTI displayed antibacterial activity alone (MICs range from 15.83 to 19.03 µM) and in combination with oxacillin (FICI range from 0.20 to 0.33) against strains of S. aureus, including methicillin-resistant strains. Overproduction of reactive oxygen species and plasma membrane pore formation are involved in the antibacterial action mode of ShTI. Overall, ShTI represents a novel candidate for use as a therapeutic agent for the bacterial management of S. aureus infections.


Subject(s)
Oxacillin , Staphylococcus aureus , Oxacillin/pharmacology , Oxacillin/analysis , Trypsin Inhibitors/pharmacology , Trypsin Inhibitors/analysis , Salvia hispanica , Anti-Bacterial Agents/pharmacology , Seeds/chemistry , Drug Combinations
14.
Future Microbiol ; 17: 1363-1379, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36169348

ABSTRACT

Aims: This study aimed to evaluate the antibacterial effect of two new cationic surfactants based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM). Materials & methods: Antibacterial activity, mechanism of action and interactions with Staphylococcus aureus enzymes were measured through microbiological, flow cytometry and molecular docking assays, respectively. Results & conclusion: These compounds showed antibacterial activity in the range of 4.06-16.24 µg/ml against planktonic cells and no activity against mature biofilms, since they caused a loss of membrane integrity and increased DNA damage, as revealed by flow cytometry analysis. In silico assays revealed the existence of molecular bonds such as hydrogen bonds, mainly with DNA. Therefore, these compounds have promising pharmacological activity against MRSA strains.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Tryptophan/pharmacology , Microbial Sensitivity Tests , Arginine/pharmacology , Arginine/chemistry , Surface-Active Agents/pharmacology , Molecular Docking Simulation , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , Phenylalanine/pharmacology
15.
Front Public Health ; 10: 900077, 2022.
Article in English | MEDLINE | ID: mdl-35719644

ABSTRACT

Arboviruses are a group of diseases that are transmitted by an arthropod vector. Since they are part of the Neglected Tropical Diseases that pose several public health challenges for countries around the world. The arboviruses' dynamics are governed by a combination of climatic, environmental, and human mobility factors. Arboviruses prediction models can be a support tool for decision-making by public health agents. In this study, we propose a systematic literature review to identify arboviruses prediction models, as well as models for their transmitter vector dynamics. To carry out this review, we searched reputable scientific bases such as IEE Xplore, PubMed, Science Direct, Springer Link, and Scopus. We search for studies published between the years 2015 and 2020, using a search string. A total of 429 articles were returned, however, after filtering by exclusion and inclusion criteria, 139 were included. Through this systematic review, it was possible to identify the challenges present in the construction of arboviruses prediction models, as well as the existing gap in the construction of spatiotemporal models.


Subject(s)
Arbovirus Infections/virology , Arboviruses/classification , Arthropod Vectors/classification , Machine Learning , Neglected Diseases/virology , Public Health/methods , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arboviruses/pathogenicity , Arboviruses/physiology , Arthropod Vectors/virology , Humans , Machine Learning/standards , Machine Learning/trends , Models, Statistical , Neglected Diseases/epidemiology , Public Health/trends
16.
J Med Microbiol ; 71(5)2022 May.
Article in English | MEDLINE | ID: mdl-35575783

ABSTRACT

Introduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs.Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary. This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp. Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation.Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme.Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.


Subject(s)
Antifungal Agents , Fluconazole , Antifungal Agents/pharmacology , Apoptosis , Biofilms , Candida , Candida albicans , Chlorogenic Acid/pharmacology , Drug Resistance, Fungal , Fluconazole/pharmacology , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation
17.
Future Microbiol ; 17: 437-448, 2022 04.
Article in English | MEDLINE | ID: mdl-35285249

ABSTRACT

Aims: To evaluate the antifungal effect of dobutamine against Candida glabrata as well as its synergism with azoles and its action on biofilm. Methods: The M27-A3 protocol and flow cytometry were used for elucidation of the possible mechanism of action. Results: The tested isolates presented MICs ranging from 2 to 32 µg/ml for dobutamine, with fungistatic effect. A total of 82% of the strains showed synergism with fluconazole, with 90% showing synergism with itraconazole. The effect on biofilm formation was nonsignificant. Cytometry tests showed that dobutamine induced mitochondrial depolarization. Conclusion: Dobutamine has an antifungal effect on strains of C. glabrata and synergistic activity with azoles. This effect is probably mediated by increased oxidative damage to the membrane.


Subject(s)
Azoles , Candida glabrata , Antifungal Agents/pharmacology , Azoles/pharmacology , Dobutamine/pharmacology , Drug Resistance, Fungal , Fluconazole/pharmacology , Microbial Sensitivity Tests
18.
Colloids Surf B Biointerfaces ; 207: 112017, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34391169

ABSTRACT

In the past two decades, the increase in microbial resistance to conventional antimicrobials has spurred scientists around the world to search tirelessly for new treatments. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds. In this work, two new cationic amino acid-based surfactants were synthesized and their physicochemical, antifungal and antibiofilm properties evaluated. The surfactants were based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM) and prepared from renewable raw materials using a simple chemical procedure. The critical micelle concentrations of the new surfactants were determined by conductivity and fluorescence. Micellization of LPAM and LTAM took place at 1.05 and 0.54 mM, respectively. Both exhibited good antifungal activity against fluconazole-resistant Candida spp. strains, with a low minimum inhibitory concentration (8.2 µg/mL). Their mechanism of action involves alterations in cell membrane permeability and mitochondrial damage, leading to death by apoptosis. Furthermore, when LPAM and LTAM were applied with Amphotericin B, a significant synergistic effect was observed against all the studied Candida strains. These new cationic surfactants are also able to disperse biofilms of Candida spp. at low concentrations. The results indicate that LPAM and LTAM have potential application to combat the advance of fungal resistance as well as microbial biofilms.


Subject(s)
Antifungal Agents , Fluconazole , Amphotericin B/pharmacology , Antifungal Agents/pharmacology , Arginine , Biofilms , Candida , Drug Resistance, Fungal , Fluconazole/pharmacology , Microbial Sensitivity Tests , Phenylalanine , Surface-Active Agents/pharmacology , Tryptophan
19.
Can J Microbiol ; 67(12): 885-893, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34314621

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the main human pathogens and is responsible for many diseases, ranging from skin infections to more invasive infections. These infections are dangerous and expensive to treat because these strains are resistant to a large number of conventional antibiotics. Thus, the antibacterial effect of ketamine against MRSA strains, its mechanism of action, and in silico interaction with sortase A were evaluated. The antibacterial effect of ketamine was assessed using the broth microdilution method. Subsequently, the mechanism of action was assessed using flow cytometry and molecular docking assays with sortase A. Our results showed that ketamine has a significant antibacterial activity against MRSA strains in the range of 2.49-3.73 mM. Their mechanism of action involves alterations in membrane integrity and DNA damage, reducing cell viability, and inducing apoptosis. In addition, ketamine had an affinity for S. aureus sortase A. These results indicate that this compound can be used as an alternative to develop new strategies to combat infections caused by MRSA.


Subject(s)
Ketamine , Methicillin-Resistant Staphylococcus aureus , Aminoacyltransferases , Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Cysteine Endopeptidases , Humans , Ketamine/pharmacology , Microbial Sensitivity Tests , Molecular Docking Simulation , Staphylococcus aureus
20.
F1000Res ; 10: 323, 2021.
Article in English | MEDLINE | ID: mdl-34164114

ABSTRACT

Non-coding RNAs (ncRNAs) are important players in the cellular regulation of organisms from different kingdoms. One of the key steps in ncRNAs research is the ability to distinguish coding/non-coding sequences. We applied seven machine learning algorithms (Naive Bayes, SVM, KNN, Random Forest, XGBoost, ANN and DL) through 15 model organisms from different evolutionary branches. Then, we created a stand-alone and web server tool (RNAmining) to distinguish coding and non-coding sequences, selecting the algorithm with the best performance (XGBoost). Firstly, we used coding/non-coding sequences downloaded from Ensembl (April 14th, 2020). Then, coding/non-coding sequences were balanced, had their tri-nucleotides counts analysed and we performed a normalization by the sequence length. Thus, in total we built 180 models. All the machine learning algorithms tests were performed using 10-folds cross-validation and we selected the algorithm with the best results (XGBoost) to implement at RNAmining. Best F1-scores ranged from 97.56% to 99.57% depending on the organism. Moreover, we produced a benchmarking with other tools already in literature (CPAT, CPC2, RNAcon and Transdecoder) and our results outperformed them, opening opportunities for the development of RNAmining, which is freely available at https://rnamining.integrativebioinformatics.me/.


Subject(s)
Machine Learning , RNA , Algorithms , Bayes Theorem , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...