Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 161: 977-998, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32553969

ABSTRACT

Conventional strategies (Turkevich's, and modified Turkevich's methods) often synthesize gold nanoparticles (AuNPs). These pathways produce AuNPs using toxic chemistries to reduce Au(III) and stabilize Au(0) atoms upon the AuNP surfaces. To overcome the disadvantages of conventional approaches, chitosan and chitosan-based materials associate with Au(III) to produce composites. Chitosan and derivatives reduce Au(III) and stabilize AuNPs, promoting biocompatibility to the composites, following approaches in-situ. In this review, we report methods to develop chitosan/AuNPs-based composites. The main criticism is about the mechanism of composite formation. Also, we highlight applications of chitosan/AuNPs-based devices in the biomedical arena. We report the synthesis of biosensors, drug delivery devices, scaffolds, antimicrobial coatings, and others. The major criticism is concerning the material design and the lack of data regarding the composite biocompatibility. We support a critical viewpoint.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Biomedical Research/methods , Humans
2.
J Colloid Interface Sci ; 555: 373-382, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31398565

ABSTRACT

In recent years, electrochemical energy devices, i.e. batteries, fuel cells, solar cells, and supercapacitors, have attracted considerable attention of scientific community. The architecture of active materials plays a crucial role for improving supercapacitors performance. Herein, titanium dioxide (TiO2) nanofibers (1D) have been synthesized by electrospinning process and used as a backbone to manganese dioxide (MnO2) nanosheets (2D) growth through hydrothermal method. This strategy allows the obtaining of 1D/2D heterostructure architecture, which has demonstrated superior electrochemical performance in relation to pristine MnO2. The highest electrochemical performance is due to the synergic effect between the metal oxides, where TiO2 nanofibers provide electrochemical stability for active MnO2 phase. Thus, the designed TiO2@MnO2 structure can reach maximum specific capacitance of 525 F·g-1 at a current density of 0.25 A·g-1, and it demonstrates an excellent stability by retaining 81% of the initial capacitance with coulombic efficiency of 91%. Therefore, the novel architecture of TiO2@MnO2 based on nanofibers and nanosheets exhibits superior electrochemical properties to be used in supercapacitor applications.

3.
J Colloid Interface Sci ; 535: 245-254, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30312950

ABSTRACT

Photocatalytic activity of TiO2 nanoparticles is highly dependent on their phase composition. The coexistence of anatase and rutile phases in a single nanoparticle eases the electron transfer process between the phases, and favors the separation of photogenerated pairs. In this work, highly photoactive mixed-phase TiO2 nanostructures were prepared by supercritical antisolvent precipitation (SAS), an environmentally friendly technology. It is shown here that this methodology has the remarkable ability to produce highly porous (515 m2/g) and crystalline TiO2 nanoparticles. The phase composition of as-prepared TiO2 samples can be tailored through annealing process. Several mixed-phase TiO2 samples were tested to assess the correlation between photocatalytic activity and phase composition. The photocatalytic performance is strongly affected by the anatase-rutile ratio, since the synergism between phases enhances the charge separation, reducing the recombination effect of the photogenerated pairs (e-/h+). It was found that the nanocatalyst composed by 7.0 wt% of rutile phase and 93.0 wt% of anatase phase, named as TiO2_650, presented the highest photodegradation for both methyl orange (MO) and methylene blue (MB) dyes. Interestingly, TiO2 samples prepared by SAS have superior photoactivity than the benchmark photocatalyst names as P25, which is a widely used TiO2 material composed of anatase and rutile phases.

4.
Colloids Surf B Biointerfaces ; 122: 404-413, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25087021

ABSTRACT

Albumin (BSA) microparticles were developed as a biotechnological alternative for drug delivery. Vitamin B12 (Vit-B12) was used as a model drug. The microparticles were obtained from maleic anhydride-functionalized BSA and N',N'-dimethylacrylamide (DMAAm) in a W/O emulsion without and with PVA. The microparticles produced at 15min of stirring without PVA showed the best results in terms of size, homogeneity, and sphericity. In such a case, BSA played a role as a surface active agent, replacing PVA. For longer stirring times, BSA was unable to act as an emulsifier. These microparticles showed an uncommon release profile, consisting of a two-step release mechanism, at the pH range studied. Considering that a two-step release mechanism is occurring, the experimental data were adjusted by applying modified power law and Weibull equations in order to describe release mechanism n and release rate constant k, respectively. Each one of the release stages was related to a specific value of n and k. The second stage was driven by a super case II transport mechanism, as a result of diffusion, macromolecular relaxation, and erosion. A third model, described by Hixson-Crowell, confirmed the erosion mechanism. Vit-B12 diffusion kinetics in aqueous solutions (i.e., without the microparticles) follows a one-step process, being k dependent on the pH, confirming that the two-step release mechanism is a characteristic profile of the developed microparticles. The microparticles released only 2.70% of their initial drug load at pH 2, and 58.53% at pH 10.


Subject(s)
Microspheres , Serum Albumin, Bovine/chemistry , Microscopy, Electron, Scanning , Proton Magnetic Resonance Spectroscopy , Spectroscopy, Fourier Transform Infrared , Vitamin B 12/pharmacokinetics
5.
Int J Biol Macromol ; 67: 43-52, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24565898

ABSTRACT

Covalent TiO(2)-co-pectin microspheres containing Fe(3)O(4) nanoparticles were developed through an ultrasound-induced crosslinking/polymerization reaction between the glycidyl methacrylate from vinyl groups in TiO(2) and in pectin. ζ-potentials became less negative in the nanostructured microspheres, caused by the presence of both inorganic particles in the negatively charged pectin. The nanostructured pectin microspheres showed an amoxicillin release rate slower than that of pure pectin microspheres. The proposed microspheres were found to be a sustained release system of amoxicillin in the acid medium. Furthermore, the antibiotic release may be modulated by exposition of the microspheres to a remote magnetic field. In practical terms, the nanostructured microspheres could deliver a larger proportion of their initial load to specific site of action. The cytotoxic concentrations for 50% of VERO cells (CC(50)), calculated as the concentration required to reduce cell viability by 50% after 72h of incubation, for pectin-only microspheres and nanostructured pectin microspheres were 217.7±6.5 and 121.5±4.9µgmL(-1), respectively. The obtained CC(50) values indicated acceptable cytotoxic levels for an incubation period of 72h, showing that the pectin microspheres have a great pharmacological potential for uses in biological environments, even after the introduction of both Fe(3)O(4) and TiO(2).


Subject(s)
Drug Delivery Systems , Metal Nanoparticles/chemistry , Pectins/chemistry , Titanium/chemistry , Animals , Chlorocebus aethiops , Ferric Compounds/chemistry , Ferric Compounds/therapeutic use , Humans , Magnetic Fields , Metal Nanoparticles/therapeutic use , Microspheres , Pectins/therapeutic use , Spectroscopy, Fourier Transform Infrared , Titanium/therapeutic use , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...