Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Blood Adv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830132

ABSTRACT

Smoldering Multiple Myeloma (SMM) is an asymptomatic plasma cell (PC) neoplasm that may evolve with variable frequency into multiple myeloma (MM). SMM is initiated by chromosomal translocations involving the IgH locus or by hyperdiploidy and evolves through acquisition of additional genetic lesions. In this scenario, we aimed at establishing a reliable analysis pipeline to infer genomic lesions from transcriptomic analysis, by combining single-cell RNA sequencing (scRNA-seq) with B-cell receptor sequencing and copy- number abnormality (CNA) analysis to identify clonal PCs at the genetic level along their specific transcriptional landscape. We profiled 20,465 bone marrow (BM) PCs derived from five SMM/MM patients and unbiasedly identified clonal and polyclonal plasma cells. Hyperdiploidy, t(11;14) and t(6;14) were identified at the scRNA level by analysis of chimeric reads. Subclone functional analysis was improved by combining transcriptome with CNA analysis. As examples, we illustrate the different functional properties of a light chain escape subclone in SMM, and of different B-cell and PC subclones in a patient affected by Wäldenstrom Macroglobulinemia and SMM. Overall, our data provide a proof of principle for inference of clinically relevant genotypic data from scRNAseq, which in turn will refine functional annotation of the clonal architecture of PC dyscrasias.

2.
Clin Exp Med ; 24(1): 51, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441683

ABSTRACT

Intravascular large B-cell lymphoma (IVLBCL) is a rare aggressive extranodal non-Hodgkin lymphoma. The predominant, if not exclusive, growth of neoplastic cells within the lumina of small-sized vessels represents the hallmark of the disease. Diagnosis is challenging due to the absence of marked lymphadenopathy, the highly heterogeneous clinical presentation, and the rarity of the condition. Clinical presentation is characterized by variable combinations of nonspecific signs and symptoms (such as fever and weight loss), organ-specific focal manifestations due to altered perfusion, and hemophagocytic syndrome. The rarity of this entity and the paucity of neoplastic cells in biopsy samples hamper the study of recurrent molecular abnormalities. The purpose of this study was to explore the feasibility of a different approach to recover a sufficient amount of DNA of acceptable quality to perform next-generation sequencing studies. Here, we report the findings of whole-exome next-generation sequencing performed on a fresh-frozen cutaneous sample of IVLBCL, paired with the patient saliva used as germline DNA. To increase the cancer cell fraction, only the subcutaneous tissue was selected. With this approach, we obtained high-quality DNA and were able to identify oncogenic mutations specific for this entity and recapitulating its post-germinal center origin, even if the tumor fraction was low. Molecular studies performed on fresh-frozen cutaneous sample are feasible in IVLBCL, especially when analysis is restricted to the subcutaneous tissue. Wide adoption of this reproducible and cost-effective approach may foster further studies, which may be of help in supporting diagnosis, providing pathogenetic insights, and guiding treatment decisions.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Lymphoma, Non-Hodgkin , Humans , Exome Sequencing , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/genetics , Subcutaneous Tissue , DNA
4.
Blood ; 143(8): 685-696, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-37976456

ABSTRACT

ABSTRACT: CD19 chimeric antigen receptor (CAR) T cells and CD20 targeting T-cell-engaging bispecific antibodies (bispecs) have been approved in B-cell non-Hodgkin lymphoma lately, heralding a new clinical setting in which patients are treated with both approaches, sequentially. The aim of our study was to investigate the selective pressure of CD19- and CD20-directed therapy on the clonal architecture in lymphoma. Using a broad analytical pipeline on 28 longitudinally collected specimen from 7 patients, we identified truncating mutations in the gene encoding CD20 conferring antigen loss in 80% of patients relapsing from CD20 bispecs. Pronounced T-cell exhaustion was identified in cases with progressive disease and retained CD20 expression. We also confirmed CD19 loss after CAR T-cell therapy and reported the case of sequential CD19 and CD20 loss. We observed branching evolution with re-emergence of CD20+ subclones at later time points and spatial heterogeneity for CD20 expression in response to targeted therapy. Our results highlight immunotherapy as not only an evolutionary bottleneck selecting for antigen loss variants but also complex evolutionary pathways underlying disease progression from these novel therapies.


Subject(s)
Lymphoma, B-Cell , Lymphoma , Humans , Neoplasm Recurrence, Local/metabolism , T-Lymphocytes , Immunotherapy, Adoptive/methods , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/therapy , Lymphoma/metabolism , Antigens, CD19 , Receptors, Antigen, T-Cell
7.
Methods Mol Biol ; 2572: 67-79, 2023.
Article in English | MEDLINE | ID: mdl-36161408

ABSTRACT

The Visium Spatial Gene Expression Solution (Visium 10×) allows for the mRNA analysis using high throughput sequencing and maps a transcriptional expression pattern in tissue sections using high-resolution microscope imaging in ex-vivo human and mice samples. The workflow surveys spatial global gene expression in tissue sections, exploiting the whole transcriptome profiling and defining the set of transcripts via targeted gene panels. An automated cell type annotation allows a comparison with control tissue samples. This technique delineates cancerous or diseased tissue boundaries and details gene expression gradients in the tissue surrounding the tumor or pathologic nests. Remarkably, the Visium 10× allows for whole transcriptome and targeted analysis without the loss of spatial information. This approach provides gene expression data within the context of tissue architecture, tissue microenvironments, and cell groups. It can be used in association with therapy, anti-angiogenic therapy, and immunotherapy to improve treatment response.


Subject(s)
Gene Expression Profiling , Neoplasms , Animals , Gene Expression Profiling/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Neoplasms/genetics , RNA, Messenger , Transcriptome , Tumor Microenvironment
8.
Clin Cancer Res ; 29(1): 279-288, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36282272

ABSTRACT

PURPOSE: Proteasome inhibitors (PI) are the backbone of various treatment regimens in multiple myeloma. We recently described the first in-patient point mutations affecting the 20S subunit PSMB5 underlying PI resistance. Notably, in vivo, the incidence of mutations in PSMB5 and other proteasome encoding genes is too low to explain the development of resistance in most of the affected patients. Thus, additional genetic and epigenetic alterations need to be explored. EXPERIMENTAL DESIGN: We performed DNA methylation profiling by Deep Bisulfite Sequencing in PSMB5, PSMC2, PSMC5, PSMC6, PSMD1, and PSMD5, a subset of proteasome subunits that have hitherto been associated with PI resistance, recruited from our own previous research, the literature, or a meta-analysis on the frequency of somatic mutations. Methylation was followed up on gene expression level and by dual-luciferase reporter assay. The KMS11 cell line served as a model to functionally test the impact of demethylating agents. RESULTS: We identified PSMD5 promoter hypermethylation and subsequent epigenetic gene silencing in 24% of PI refractory patients. Hypermethylation correlated with decreased expression and the regulatory impact of this region was functionally confirmed. In contrast, patients with newly diagnosed multiple myeloma, along with peripheral blood mononuclear cells and CD138+ plasma cells from healthy donors, generally show unmethylated profiles. CONCLUSIONS: Under the selective pressure of PI treatment, multiple myeloma cells acquire methylation of the PSMD5 promoter silencing the PSMD5 gene expression. PSMD5 acts as a key orchestrator of proteasome assembly and its downregulation was described to increase the cell's proteolytic capacity. PSMD5 hypermethylation, therefore, represents a novel mechanism of PI tolerance in multiple myeloma.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Bortezomib , Proteasome Inhibitors/pharmacology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Leukocytes, Mononuclear/metabolism , Drug Resistance, Neoplasm/genetics , Nucleotides , Cell Line, Tumor
9.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36555330

ABSTRACT

Multiple myeloma (MM) has a highly heterogeneous genetic background, which complicates its molecular tracking over time. Nevertheless, each MM patient's malignant plasma cells (PCs) share unique V(D)J rearranged sequences at immunoglobulin loci, which represent ideal disease biomarkers. Because the tumor-specific V(D)J sequence is highly expressed in bulk RNA in MM patients, we wondered whether it can be identified by single-cell RNA sequencing (scRNA-seq). To this end we analyzed CD138+ cells purified from bone marrow aspirates of 19 samples with PC dyscrasias by both a standard method based on bulk DNA and by an implementation of the standard 10x Genomics protocol to detect expressed V(D)J sequences. A dominant clonotype was easily identified in each sample, accounting on average for 83.65% of V(D)J-rearranged cells. Compared with standard methods, scRNA-seq analysis proved highly concordant and even more effective in identifying clonal productive rearrangements, by-passing limitations related to the misannealing of consensus primers in hypermutated regions. We next validated its accuracy to track 5 clonal cells with absolute sensitivity in a virtual sample containing 3180 polyclonal cells. This shows that single-cell V(D)J analysis may be used to find rare clonal cells, laying the foundations for functional single-cell dissection of minimal residual disease.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/pathology , Immunoglobulin Heavy Chains/genetics , V(D)J Recombination , Gene Rearrangement , Sequence Analysis, RNA
11.
Cancers (Basel) ; 14(13)2022 Jul 04.
Article in English | MEDLINE | ID: mdl-35805041

ABSTRACT

Growing evidence points to multiple myeloma (MM) and its stromal microenvironment using several mechanisms to subvert effective immune and anti-tumor responses. Recent advances have uncovered the tumor-stromal cell influence in regulating the immune-microenvironment and have envisioned targeting these suppressive pathways to improve therapeutic outcomes. Nevertheless, some subgroups of patients include those with particularly unfavorable prognoses. Biological stratification can be used to categorize patient-, disease- or therapy-related factors, or alternatively, these biological determinants can be included in a dynamic model that customizes a given treatment to a specific patient. Genetic heterogeneity and current knowledge enforce a systematic and comprehensive bench-to-bedside approach. Given the increasing role of cancer stem cells (CSCs) in better characterizing the pathogenesis of solid and hematological malignancies, disease relapse, and drug resistance, identifying and describing CSCs is of paramount importance in the management of MM. Even though the function of CSCs is well-known in other cancer types, their role in MM remains elusive. With this review, we aim to provide an update on MM homing and resilience in the bone marrow micro milieu. These data are particularly interesting for clinicians facing unmet medical needs while designing novel treatment approaches for MM.

12.
Front Immunol ; 13: 852158, 2022.
Article in English | MEDLINE | ID: mdl-35634287

ABSTRACT

Hematologic patients show lower responses to SARS-CoV-2 vaccines, but predictors of seroconversion are lacking. In this prospective cohort study, hematologic patients undergoing SARS-CoV-2 mRNA vaccination at a single center in Milan, Italy, were sampled for anti-Spike and anti-Nucleocapsid IgG titer at 5 ± 1 weeks and at 3 months from the second vaccine dose. Patients (N = 393) received either BNT162b2 (Pfizer-BioNTech, 48%) or MRNA-1273 (Moderna, 52%), and 284 (72%) seroconverted and 100% persisted at 3 months. Non-response was higher in chronic lymphocytic leukemia (CLL) and lymphoma patients, and in those treated with small molecules and monoclonal antibodies. In myeloid neoplasms, lower responses were detected in patients with acute myeloid leukemia treated with venetoclax plus hypomethylating agents and in patients with myelofibrosis receiving ruxolitinib. Multivariable analysis showed that seroconversion was favorably associated with a diagnosis other than indolent lymphoma/CLL [OR 8.5 (95% CI 4.1-17.6)], lack of B-cell-depleting therapy [OR 3.15 (1.7-5.9)], and IgG levels within the normal range [OR 2.2 (1.2-4.2)]. We developed a simple algorithm according to these 3 risk factors [(A) diagnosis of indolent lymphoma/CLL, (B) B-cell-depleting treatment, and (C) low IgG] to predict non-response. IgG levels and treatment may be modifiable risk factors and should be considered for timing of vaccine administration.


Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Prospective Studies , RNA, Messenger , SARS-CoV-2 , Seroconversion
13.
Blood Adv ; 6(21): 5702-5706, 2022 11 08.
Article in English | MEDLINE | ID: mdl-35390146

ABSTRACT

Monoclonal gammopathy of undetermined significance (MGUS) and clonal hematopoiesis (CH) are 2 preclinical clonal expansions of hematopoietic cells whose prevalence rises with age, reaching almost 10% in people of aged 70 years and older. The increased risk of myeloid malignancies in patients with myeloma is well defined, and the study of the association between CH and MGUS could help explain this phenomenon. Here, we analyzed a fully clinically annotated dataset of 777 older subjects (median age, 91 years) previously screened for prevalence of CH. The prevalence of MGUS and CH was 9.6% and 17.3%, respectively. We detected CH in 9.7% of the patients with MGUS and MGUS in 5.5% of the patients with CH. We did not find a significant correlation between the presence of MGUS and CH. Furthermore, the 2 conditions showed a differential association with clinical and laboratory covariates, suggesting that MGUS and CH may represent age-associated unrelated clonal drifts of hematopoietic cells. Confirmatory studies are needed to assess the relevance of CH in plasma cell disorders. This trial was registered at www.clinicaltrials.gov as #NCT03907553.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Paraproteinemias , Humans , Aged , Aged, 80 and over , Monoclonal Gammopathy of Undetermined Significance/epidemiology , Monoclonal Gammopathy of Undetermined Significance/complications , Clonal Hematopoiesis , Multiple Myeloma/complications , Paraproteinemias/complications , Cohort Studies
14.
Blood Adv ; 6(7): 2195-2206, 2022 04 12.
Article in English | MEDLINE | ID: mdl-34861679

ABSTRACT

Deregulation such as overexpression of adhesion molecules influences cancer progression and survival. Metastasis of malignant cells from their primary tumor site to distant organs is the most common reason for cancer-related deaths. Junctional adhesion molecule-C (JAM-C), a member of the immunoglobulin-like JAM family, can homodimerize and aid cancer cell migration and metastasis. Here we show that this molecule is dynamically expressed on multiple myeloma (MM) cells in the bone marrow and co-localizes with blood vessels within the bone marrow of patients and mice. In addition, upregulation of JAM-C inversely correlates with the downregulation of the canonical plasma cell marker CD138 (syndecan-1), whose surface expression has recently been found to dynamically regulate a switch between MM growth in situ and MM dissemination. Moreover, targeting JAM-C in a syngeneic in vivo MM model ameliorates MM progression and improves outcome. Overall, our data demonstrate that JAM-C might serve not only as an additional novel diagnostic biomarker but also as a therapeutic target in MM disease.


Subject(s)
Cell Adhesion Molecules/metabolism , Junctional Adhesion Molecule C , Multiple Myeloma , Receptors, Cell Surface/metabolism , Animals , Bone Marrow/pathology , Cell Adhesion Molecules/genetics , Cell Movement , Humans , Mice , Multiple Myeloma/drug therapy
15.
Blood Adv ; 5(19): 3794-3798, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34471932

ABSTRACT

T cell-engaging immunotherapies exert unprecedented single-agent activity in multiple myeloma (MM), thereby putting a yet unexplored selective pressure on the clonal architecture. In this study, we report on homozygous BCMA (TNFRSF17) gene deletion after BCMA-targeting T cell-redirecting bispecific antibody therapy in a heavily pretreated MM patient. Loss of BCMA protein expression persisted over subsequent relapses, with no response to treatment with anti-BCMA antibody drug conjugate. In light of the multiple alternative targets that are emerging in addition to BCMA, we extended our analyses to delineate a more complete picture of genetic alterations that may have an impact on immunotherapy targets in MM. We performed whole-genome sequencing and RNA sequencing in 100 MM patients (50 were newly diagnosed; 50 were relapsed/refractory) and identified a significant proportion of patients with aberrations in genes encoding immunotherapy targets; GPRC5D ranked first with 15% heterozygous deletions, followed by CD38 (10%), SDC1 (5%), and TNFRSF17 (4%). Notably, these heterozygous deletions did not lower the expression levels of respective genes, but they may represent a first hit that drives the acquisition of homozygous deletions and subsequent antigen-loss relapse upon targeted immunotherapy. In summary, we show preexisting vulnerability in genes encoding immunotargets before and homozygous deletions after T cell-engaging immunotherapy.


Subject(s)
Antibodies, Bispecific , Multiple Myeloma , B-Cell Maturation Antigen , Humans , Immunotherapy , Multiple Myeloma/genetics , Multiple Myeloma/therapy , T-Lymphocytes
16.
Clin Cancer Res ; 27(23): 6479-6490, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34526359

ABSTRACT

PURPOSE: Multiple myeloma is a biologically heterogenous plasma-cell disorder. In this study, we aimed at dissecting the functional impact on transcriptome of gene mutations, copy-number abnormalities (CNA), and chromosomal rearrangements (CR). Moreover, we applied a geno-transcriptomic approach to identify specific biomarkers for personalized treatments. EXPERIMENTAL DESIGN: We analyzed 514 newly diagnosed patients from the IA12 release of the CoMMpass study, accounting for mutations in multiple myeloma driver genes, structural variants, copy-number segments, and raw-transcript counts. We performed an in silico drug sensitivity screen (DSS), interrogating the Cancer Dependency Map (DepMap) dataset after anchoring cell lines to primary tumor samples using the Celligner algorithm. RESULTS: Immunoglobulin translocations, hyperdiploidy and chr(1q)gain/amps were associated with the highest number of deregulated genes. Other CNAs and specific gene mutations had a lower but very distinct impact affecting specific pathways. Many recurrent genes showed a hotspot (HS)-specific effect. The clinical relevance of double-hit multiple myeloma found strong biological bases in our analysis. Biallelic deletions of tumor suppressors and chr(1q)-amplifications showed the greatest impact on gene expression, deregulating pathways related to cell cycle, proliferation, and expression of immunotherapy targets. Moreover, our in silico DSS showed that not only t(11;14) but also chr(1q)gain/amps and CYLD inactivation predicted differential expression of transcripts of the BCL2 axis and response to venetoclax. CONCLUSIONS: The multiple myeloma genomic architecture and transcriptome have a strict connection, led by CNAs and CRs. Gene mutations impacted especially with HS-mutations of oncogenes and biallelic tumor suppressor gene inactivation. Finally, a comprehensive geno-transcriptomic analysis allows the identification of specific deregulated pathways and candidate biomarkers for personalized treatments in multiple myeloma.


Subject(s)
Multiple Myeloma , Gene Expression Profiling , Genomics , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Oncogenes , Transcriptome
17.
Cancers (Basel) ; 13(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34282760

ABSTRACT

Smoldering multiple myeloma (SMM) is an asymptomatic disorder of clonal bone marrow (BM) plasma cells (PCs) in between the premalignant condition known as monoclonal gammopathy of undetermined significance and overt multiple myeloma (MM). It is characterized by a deep biological heterogeneity that is reflected in a markedly variable progression risk among patients. Recently proposed risk stratification models mainly rely on indirect markers of disease burden and are unable to identify cases in whom clonal PCs have already undergone the "malignant switch" but major clonal expansion has not occurred yet. In the last years, the application of next-generation sequencing (NGS) techniques has led to profound advances in the understanding of the molecular bases of SMM progression, and in all likelihood, it will contribute to the needed improvement of SMM prognostication. In this Review, we describe the recent advances in characterizing the genomic landscape of SMM and intrinsic determinants of its progression, highlighting their implications in terms of understanding of tumor evolution and prognostication. We also review the main studies investigating the role of the microenvironment in this early disease stage. Finally, we mention the results of the first randomized clinical trials and discuss the potential clinical translability of the genomic insights.

18.
Blood Cancer Discov ; 2(4): 338-353, 2021 07.
Article in English | MEDLINE | ID: mdl-34268498

ABSTRACT

The bone marrow (BM) microenvironment actively promotes multiple myeloma (MM) pathogenesis and therapies targeting both cancer cells and the niche are highly effective. We were interested in identifying novel signaling pathways supporting MM-BM crosstalk. Mutations in the transmembrane receptor Roundabout 1 (ROBO1) were recently identified in MM patients, however their functional consequences are uncertain. Through protein structure-function studies, we discovered that ROBO1 is necessary for MM adhesion to BM stromal and endothelial cells and ROBO1 knock out (KO) compromises BM homing and engraftment in a disseminated mouse model. ROBO1 KO significantly decreases MM proliferation in vitro and intra- and extramedullary tumor growth, in vivo. Mechanistically, ROBO1 C-terminus is cleaved in a ligand-independent fashion and is sufficient to promote MM proliferation. Viceversa, mutants lacking the cytoplasmic domain, including the human-derived G674* truncation, act dominantly negative. Interactomic and RNA sequencing studies suggest ROBO1 may be involved in RNA processing, supporting further studies.


Subject(s)
Bone Marrow , Multiple Myeloma , Nerve Tissue Proteins , Receptors, Immunologic , Animals , Bone Marrow/metabolism , Bone Marrow Cells , Endothelial Cells/metabolism , Humans , Mice , Multiple Myeloma/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Tumor Microenvironment/genetics , Roundabout Proteins
19.
Commun Biol ; 4(1): 799, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172833

ABSTRACT

The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD + AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD + AML.


Subject(s)
Actin Cytoskeleton/physiology , Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mutation , Staurosporine/analogs & derivatives , fms-Like Tyrosine Kinase 3/genetics , Actin Cytoskeleton/chemistry , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Pyrones/pharmacology , Quinolines/pharmacology , Staurosporine/pharmacology , Sulfonamides/pharmacology , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/physiology , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/physiology
20.
Blood ; 138(18): 1721-1726, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34115836

ABSTRACT

Cereblon is the direct binding target of the immunomodulatory drugs (IMiDs) that are commonly used to treat multiple myeloma (MM), the second most frequent hematologic malignancy. Patients respond well to initial treatment with IMiDs, but virtually all patients develop drug resistance over time, and the underlying mechanisms are poorly understood. We identified an as yet undescribed DNA hypermethylation in an active intronic CRBN enhancer. Differential hypermethylation in this region was found to be increased in healthy plasma cells, but was more pronounced in IMiD-refractory MM. Methylation significantly correlated with decreased CRBN expression levels. DNA methyltransferase inhibitor (DNTMi) in vitro experiments induced CRBN enhancer demethylation, and sensitizing effects on lenalidomide treatment were observed in 2 MM cell lines. Thus, we provide first evidence that aberrant CRBN DNA methylation is a novel mechanism of IMiD resistance in MM and may predict IMiD response prior to treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Antineoplastic Agents, Immunological/therapeutic use , Immunomodulating Agents/therapeutic use , Multiple Myeloma/drug therapy , Ubiquitin-Protein Ligases/genetics , DNA Methylation/drug effects , Drug Resistance, Neoplasm , Enhancer Elements, Genetic/drug effects , Humans , Introns/drug effects , Multiple Myeloma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...