Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38845303

ABSTRACT

BACKGROUND: Priming with two doses of AZD1222 (Oxford-AstraZeneca; ChAd) followed by a third mRNA vaccine boosting is considered in several countries, yet comparisons between heterologous and homologous booster efficacy remain unexplored. AIM: To evaluate and contrast the immunogenicity of homologous and heterologous boosting regimens. METHOD: The study examined antibody responses in 1113 subjects, comprising 895 vaccine-naïve individuals across different vaccination strategies (partial, primary series, heterologous booster, homologous booster) and 218 unvaccinated, naturally infected individuals. Assessments included neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA levels. RESULTS: The study found mRNA vaccines to exhibit superior immunogenicity in primary series vaccination compared to ChAd, with mRNA-1273 significantly enhancing NTAbs, TAbs, anti-S-RBD IgG, and anti-S1 IgA levels (p < 0.001). Both booster types improved antibody levels beyond primary outcomes, with no significant difference in TAbs and anti-S-RBD IgG levels between regimens. However, homologous mRNA boosters significantly outperformed heterologous boosters in enhancing NTAbs and anti-S1 IgA levels, with the BNT/BNT/BNT regimen yielding particularly higher enhancements (p < 0.05). CONCLUSION: The study concludes that although TAbs and anti-S-RBD IgG antibody levels are similar for both regimens, homologous mRNA boosting outperform heterologous regimen by enhancing anti-S1 IgA and neutralizing antibody levels.

2.
Influenza Other Respir Viruses ; 18(5): e13290, 2024 May.
Article in English | MEDLINE | ID: mdl-38706402

ABSTRACT

BACKGROUND: Priming with ChAdOx1 followed by heterologous boosting is considered in several countries. Nevertheless, analyses comparing the immunogenicity of heterologous booster to homologous primary vaccination regimens and natural infection are lacking. In this study, we aimed to conduct a comparative assessment of the immunogenicity between homologous primary vaccination regimens and heterologous prime-boost vaccination using BNT162b2 or mRNA-1273. METHODS: We matched vaccinated naïve (VN) individuals (n = 673) with partial vaccination (n = 64), primary vaccination (n = 590), and primary series plus mRNA vaccine heterologous booster (n = 19) with unvaccinated naturally infected (NI) individuals with a documented primary SARS-CoV-2 infection (n = 206). We measured the levels of neutralizing total antibodies (NTAbs), total antibodies (TAbs), anti-S-RBD IgG, and anti-S1 IgA titers. RESULTS: Homologous primary vaccination with ChAdOx1 not only showed less potent NTAb, TAb, anti-S-RBD IgG, and anti-S1 IgA immune responses compared to primary BNT162b2 or mRNA-1273 vaccination regimens (p < 0.05) but also showed ~3-fold less anti-S1 IgA response compared to infection-induced immunity (p < 0.001). Nevertheless, a heterologous booster led to an increase of ~12 times in the immune response when compared to two consecutive homologous ChAdOx1 immunizations. Furthermore, correlation analyses revealed that both anti-S-RBD IgG and anti-S1 IgA significantly contributed to virus neutralization among NI individuals, particularly in symptomatic and pauci-symptomatic individuals, whereas among VN individuals, anti-S-RBD IgG was the main contributor to virus neutralization. CONCLUSION: The results emphasize the potential benefit of using heterologous mRNA boosters to increase antibody levels and neutralizing capacity particularly in patients who received primary vaccination with ChAdOx1.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Immunoglobulin A , Immunoglobulin G , SARS-CoV-2 , Humans , BNT162 Vaccine/immunology , BNT162 Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19/immunology , Male , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , SARS-CoV-2/immunology , Adult , 2019-nCoV Vaccine mRNA-1273/immunology , Middle Aged , Immunoglobulin A/blood , Immunoglobulin A/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Young Adult , Follow-Up Studies , Vaccination , Aged , Immunogenicity, Vaccine , Antibody Formation/immunology , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/administration & dosage , Spike Glycoprotein, Coronavirus/immunology
3.
J Infect Public Health ; 16(11): 1729-1735, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37734128

ABSTRACT

BACKGROUND: Evidence on the effectiveness of vaccination-induced immunity compared to SARS-CoV-2 natural immunity is warranted to inform vaccination recommendations. AIM: In this study, we aimed to conduct a comparative assessment of antibody responses between vaccinated naïve (VN) and unvaccinated naturally infected individuals (NI) over 10 Months. METHOD: The study comprised fully-vaccinated naïve individuals (VN; n = 596) who had no history of SARS-CoV-2 infection, and received two doses of either BNT162b2 or mRNA-1273, and naturally infected individuals who had a documented history of SARS-CoV-2 infection and no vaccination record (NI cohort; n = 218). We measured the levels of neutralizing total antibodies (NtAbs), anti-S-RBD IgG, and anti-S1 IgA titers among VN and NI up to ∼10 months from administration of the first dose, and up to ∼7 months from SARS-CoV-2 infection, respectively. To explore the relationship between the antibody responses and time, Spearman's correlation coefficient was computed. Furthermore, correlations between the levels of NtAbs/anti-S-RBD IgG and NtAbs/anti-S1 IgA were examined through pairwise correlation analysis. RESULTS: Up to six months, VN individuals had a significantly higher NtAb and anti-S-RBD IgG antibody responses compared to NI individuals. At the 7th month, there was a significant decline in antibody responses among VN individuals, but not NI individuals, with a minimum decrease of 3.7-fold (p < 0.001). Among VN individuals, anti-S1 IgA levels began to decrease significantly (1.4-fold; p = 0.007) after two months, and both NtAb and S-RBD IgG levels began to decline significantly (NtAb: 2.0-fold; p = 0.042, S-RBD IgG: 2.4-fold; p = 0.035) after three months. After 10 months, the most significant decline among VN individuals was observed for S-RBD-IgG (30.0-fold; P < 0.001), followed by NtAb (15.7-fold; P < 0.001) and S-IgA (3.7-fold; P < 0.001) (most stable). Moreover, after 5 months, there was no significant difference in the IgA response between the two groups. CONCLUSION: These findings have important implications for policymakers in the development of vaccination strategies, particularly in the consideration of booster doses to sustain long-lasting protection against COVID-19.

4.
Vaccines (Basel) ; 10(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36016206

ABSTRACT

Background: Limited commercial LFA assays are available to provide a reliable quantitative measurement of the total binding antibody units (BAU/mL) against the receptor-binding domain of the SARS-CoV-2 spike protein (S-RBD). Aim: This study aimed to evaluate the performance of the fluorescence LFA FinecareTM 2019-nCoV S-RBD test along with its reader (Model No.: FS-113) against the following reference methods: (i) the FDA-approved GenScript surrogate virus-neutralizing assay (sVNT); and (ii) three highly performing automated immunoassays: BioMérieux VIDAS®3, Ortho VITROS®, and Mindray CL-900i®. Methods: Plasma from 488 vaccinees was tested by all aforementioned assays. Fingerstick whole-blood samples from 156 vaccinees were also tested by FinecareTM. Results and conclusions: FinecareTM showed 100% specificity, as none of the pre-pandemic samples tested positive. Equivalent FinecareTM results were observed among the samples taken from fingerstick or plasma (Pearson correlation r = 0.9, p < 0.0001), suggesting that fingerstick samples are sufficient to quantitate the S-RBD BAU/mL. A moderate correlation was observed between FinecareTM and sVNT (r = 0.5, p < 0.0001), indicating that FinecareTM can be used for rapid prediction of the neutralizing antibody (nAb) post-vaccination. FinecareTM BAU results showed strong correlation with VIDAS®3 (r = 0.6, p < 0.0001) and moderate correlation with VITROS® (r = 0.5, p < 0.0001) and CL-900i® (r = 0.4, p < 0.0001), suggesting that FinecareTM can be used as a surrogate for the advanced automated assays to measure S-RBD BAU/mL.

5.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35214650

ABSTRACT

The currently authorized mRNA COVID-19 vaccines, Pfizer-BNT162b2 and Moderna-mRNA-1273, offer great promise for reducing the spread of the COVID-19 by generating protective immunity against SARS-CoV-2. Recently, it was shown that the magnitude of the neutralizing antibody (NAbs) response correlates with the degree of protection. However, the difference between the immune response in naïve mRNA-vaccinated and previously infected (PI) individuals is not well studied. We investigated the level of NAbs in naïve and PI individuals after 1 to 26 (median = 6) weeks of the second dose of BNT162b2 or mRNA-1273 vaccination. The naïve mRNA-1273 vaccinated group (n = 68) generated significantly higher (~2-fold, p ≤ 0.001) NAbs than the naïve BNT162b2 (n = 358) group. The P -vaccinated group (n = 42) generated significantly higher (~3-fold; p ≤ 0.001) NAbs levels than the naïve-BNT162b2 (n = 426). Additionally, the older age groups produced a significantly higher levels of antibodies than the young age group (<30) (p = 0.0007). Our results showed that mRNA-1273 generated a higher NAbs response than the BNT162b2 vaccine, and the PI group generated the highest level of NAbs response regardless of the type of vaccine.

6.
Viruses ; 12(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32466458

ABSTRACT

The recent outbreak of the Coronavirus disease 2019 (COVID-19) has quickly spread worldwide since its discovery in Wuhan city, China in December 2019. A comprehensive strategy, including surveillance, diagnostics, research, clinical treatment, and development of vaccines, is urgently needed to win the battle against COVID-19. The past three unprecedented outbreaks of emerging human coronavirus infections at the beginning of the 21st century have highlighted the importance of readily available, accurate, and rapid diagnostic technologies to contain emerging and re-emerging pandemics. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) based assays performed on respiratory specimens remain the gold standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging with high sensitivity and specificity as well. Even though excellent techniques are available for the diagnosis of symptomatic patients with COVID-19 in well-equipped laboratories; critical gaps still remain in screening asymptomatic people who are in the incubation phase of the virus, as well as in the accurate determination of live viral shedding during convalescence to inform decisions for ending isolation. This review article aims to discuss the currently available laboratory methods and surveillance technologies available for the detection of COVID-19, their performance characteristics and highlight the gaps in current diagnostic capacity, and finally, propose potential solutions. We also summarize the specifications of the majority of the available commercial kits (PCR, EIA, and POC) for laboratory diagnosis of COVID-19.


Subject(s)
Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Humans , Immunoenzyme Techniques , Neutralization Tests , Nucleic Acid Amplification Techniques , Pandemics , Point-of-Care Testing , Reagent Kits, Diagnostic/standards , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity , Serologic Tests , Tomography, X-Ray Computed , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...