Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37050101

ABSTRACT

A highly aggressive strain (CMN14-5-1) of Clavibacter nebraskensis bacteria, which causes Goss's wilt in corn, induced severe symptoms in a susceptible corn line (CO447), resulting in water-soaked lesions followed by necrosis within a few days. A tolerant line (CO450) inoculated with the same strain exhibited only mild symptoms such as chlorosis, freckling, and necrosis that did not progress after the first six days following infection. Both lesion length and disease severity were measured using the area under the disease progression curve (AUDPC), and significant differences were found between treatments. We analyzed the expression of key genes related to plant defense in both corn lines challenged with the CMN14-5-1 strain. Allene oxide synthase (ZmAOS), a gene responsible for the production of jasmonic acid (JA), was induced in the CO447 line in response to CMN14-5-1. Following inoculation with CMN14-5-1, the CO450 line demonstrated a higher expression of salicylic acid (SA)-related genes, ZmPAL and ZmPR-1, compared to the CO447 line. In the CO450 line, four genes related to programmed cell death (PCD) were upregulated: respiratory burst oxidase homolog protein D (ZmrbohD), polyphenol oxidase (ZmPPO1), ras-related protein 7 (ZmRab7), and peptidyl-prolyl cis-trans isomerase (ZmPPI). The differential gene expression in response to CMN14-5-1 between the two corn lines provided an indication that SA and PCD are involved in the regulation of corn defense responses against Goss's wilt disease, whereas JA may be contributing to disease susceptibility.

2.
BMC Biol ; 20(1): 239, 2022 10 24.
Article in English | MEDLINE | ID: mdl-36280878

ABSTRACT

BACKGROUND: In fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens. Pyrenophora tritici-repentis (Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements. RESULTS: A comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr's adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr's effectors: ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb 'Starship' transposon (dubbed 'Horizon') with a clearly defined target site and target site duplications. 'Horizon' was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer of ToxA) was nested within this newly identified Starship. Additionally, ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative 'Starship' (dubbed 'Icarus') in a ToxB-producing isolate. ToxB and its putative transposon were missing from the ToxB non-coding reference isolate, but the homolog toxb and 'Icarus' were both present in a different non-coding isolate. This suggests that ToxB may have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption of ToxB vertical inheritance. Finally, the genome architecture of Ptr was defined as 'one-compartment' based on calculated gene distances and evolutionary rates. CONCLUSIONS: These findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.


Subject(s)
Ascomycota , Mycotoxins , Plant Diseases/microbiology , Phylogeny , Mycotoxins/genetics , Ascomycota/genetics
3.
Biology (Basel) ; 11(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36138731

ABSTRACT

Polyketides are structurally diverse and physiologically active secondary metabolites produced by many organisms, including fungi. The biosynthesis of polyketides from acyl-CoA thioesters is catalyzed by polyketide synthases, PKSs. Polyketides play roles including in cell protection against oxidative stress, non-constitutive (toxic) roles in cell membranes, and promoting the survival of the host organisms. The genus Verticillium comprises many species that affect a wide range of organisms including plants, insects, and other fungi. Many are known as causal agents of Verticillium wilt diseases in plants. In this study, a comparative genomics approach involving several Verticillium species led us to evaluate the potential of Verticillium species for producing polyketides and to identify putative polyketide biosynthesis gene clusters. The next step was to characterize them and predict the types of polyketide compounds they might produce. We used publicly available sequences from ten species of Verticillium including V. dahliae, V. longisporum, V. nonalfalfae, V. alfalfae, V. nubilum, V. zaregamsianum, V. klebahnii, V. tricorpus, V. isaacii, and V. albo-atrum to identify and characterize PKS gene clusters by utilizing a range of bioinformatic and phylogenetic approaches. We found 32 putative PKS genes and possible clusters in the genomes of Verticillium species. All the clusters appear to be complete and functional. In addition, at least five clusters including putative DHN-melanin-, cytochalasin-, fusarielien-, fujikurin-, and lijiquinone-like compounds may belong to the active PKS repertoire of Verticillium. These results will pave the way for further functional studies to understand the role of these clusters.

4.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34682235

ABSTRACT

NADPH oxidase (Nox) genes are responsible for Reactive Oxygen Species (ROS) production in living organisms such as plants, animals, and fungi, where ROS exert different functions. ROS are critical for sexual development and cellular differentiation in fungi. In previous publications, two genes encoding thioredoxin and NADH-ubiquinone oxidoreductase involved in maintaining ROS balance were shown to be remarkably induced in a highly versus a weakly aggressive Verticillium dahliae isolate. This suggested a role of these genes in the virulence of this pathogen. NoxA (NADPH oxidase A) was identified in the V. dahliae genome. We compared in vitro expression of NoxA in highly and weakly aggressive isolates of V. dahliae after elicitation with extracts from different potato tissues. NoxA expression was induced more in the weakly than highly aggressive isolate in response to leaf and stem extracts. After inoculation of potato detached leaves with these two V. dahliae isolates, NoxA was drastically up-regulated in the highly versus the weakly aggressive isolate. We generated single gene disruption mutants for NoxA genes. noxa mutants had significantly reduced virulence, indicating important roles in V. dahliae pathogenesis on the potato. This is consistent with a significant reduction of cellophane penetration ability of the mutants compared to the wild type. However, the cell wall integrity was not impaired in the noxa mutants when compared with the wild type. The resistance of noxa mutants to oxidative stress were also similar to the wild type. Complementation of noxa mutants with a full length NoxA clones restored penetration and pathogenic ability of the fungus. Our data showed that NoxA is essential for both penetration peg formation and virulence in V. dahliae.

5.
Toxins (Basel) ; 13(9)2021 09 18.
Article in English | MEDLINE | ID: mdl-34564673

ABSTRACT

Fusarium head blight (FHB) can lead to dramatic yield losses and mycotoxin contamination in small grain cereals in Canada. To assess the extent and severity of FHB in oat, samples collected from 168 commercial oat fields in the province of Manitoba, Canada, during 2016-2018 were analyzed for the occurrence of Fusarium head blight and associated mycotoxins. Through morphological and molecular analysis, F. poae was found to be the predominant Fusarium species affecting oat, followed by F. graminearum, F. sporotrichioides, F. avenaceum, and F. culmorum. Deoxynivalenol (DON) and nivalenol (NIV), type B trichothecenes, were the two most abundant Fusarium mycotoxins detected in oat. Beauvericin (BEA) was also frequently detected, though at lower concentrations. Close clustering of F. poae and NIV/BEA, F. graminearum and DON, and F. sporotrichioides and HT2/T2 (type A trichothecenes) was detected in the principal component analysis. Sampling location and crop rotation significantly impacted the concentrations of Fusarium mycotoxins in oat. A phylogenetic analysis of 95 F. poae strains from Manitoba was conducted using the concatenated nucleotide sequences of Tef-1α, Tri1, and Tri8 genes. The results indicated that all F. poae strains belong to a monophyletic lineage. Four subgroups of F. poae strains were identified; however, no correlations were observed between the grouping of F. poae strains and sample locations/crop rotations.


Subject(s)
Avena/chemistry , Avena/microbiology , Food Contamination/analysis , Fusarium/chemistry , Fusarium/genetics , Mycotoxins/analysis , Plant Diseases/microbiology , DNA, Fungal/isolation & purification , Edible Grain/chemistry , Edible Grain/microbiology , Manitoba , Phylogeny , Species Specificity
6.
Pathogens ; 10(6)2021 May 23.
Article in English | MEDLINE | ID: mdl-34071016

ABSTRACT

Verticillium dahliae is a hemibiotrophic pathogen responsible for great losses in dicot crop production. An ExoPG gene (VDAG_03463,) identified using subtractive hybridization/cDNA-AFLP, showed higher expression levels in highly aggressive than in weakly aggressive V. dahliae isolates. We used a vector-free split-marker recombination method with PEG-mediated protoplast to delete the ExoPG gene in V. dahliae. This is the first instance of using this method for V. dahliae transformation. Only two PCR steps and one transformation step were required, markedly reducing the necessary time for gene deletion. Six mutants were identified. ExoPG expressed more in the highly aggressive than in the weakly aggressive isolate in response to potato leaf and stem extracts. Its expression increased in both isolates during infection, with higher levels in the highly aggressive isolate at early infection stages. The disruption of ExoPG did not influence virulence, nor did it affect total exopolygalacturonase activity in V. dahliae. Full genome analysis showed 8 more genes related to polygalacturonase/pectinase activity in V. dahliae. Transcripts of PGA increased in the △exopg mutant in response to potato leaf extracts, compared to the wild type. The expression pattern of those eight genes showed similar trends in the △exopg mutant and in the weakly aggressive isolate in response to potato extracts, but without the increase of PGA in the weakly aggressive isolate to leaf extracts. This indicated that the △exopg mutant of V. dahliae compensated by the suppression of ExoPG by activating other related gene.

7.
Phytopathology ; 111(12): 2287-2302, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33938238

ABSTRACT

Soybean is threatened by many pathogens that negatively affect this crop's yield and quality, such as various Fusarium species that cause wilting and root rot diseases. Fusarium root rot (FRR) in soybean can be caused by F. graminearum and other Fusarium spp. that are associated with Fusarium head blight (FHB) in cereals. Therefore, it was important to inquire whether Fusarium pathogens from soybean can cause disease in wheat and vice versa. Here, we investigated the FRR complex in Manitoba (Canada) from symptomatic plants, using both culture- and molecular-based methods. We developed a molecular diagnostic toolkit to detect and differentiate between several Fusarium spp. involved in FHB and FRR, then we evaluated cross-pathogenicity of selected Fusarium isolates collected from soybean and wheat, and the results indicate that isolates recovered from one host can infect the other host. Trichothecene production by selected Fusarium spp. was also analyzed chemically via liquid chromatography mass spectrometry in both soybean (root) and wheat (spike) tissues. Trichothecenes were also analyzed in soybean seeds from plants with FRR to check the potentiality of trichothecene translocation from infected roots to the seeds. All of the tested Fusarium isolates were capable of producing trichothecenes in wheat spikes and soybean roots, but no trichothecenes were detected in soybean seeds. This study provided evidence, for the first time, that trichothecenes were produced by several Fusarium spp. (F. cerealis, F. culmorum, and F. sporotrichioides) during FRR development in soybean.


Subject(s)
Fusarium , Trichothecenes , Fusarium/genetics , Plant Diseases , Glycine max , Virulence
8.
Pathogens ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922492

ABSTRACT

Quantitative real-time PCR was used to monitor the expression of 15 Verticillium dahliae's genes, putatively involved in pathogenicity, highly (HAV) and weakly aggressive (WAV) V. dahliae isolates after either (i) elicitation with potato leaf, stem, or root extracts, or (ii) inoculation of potato detached petioles. These genes, i.e., coding for Ras-GAP-like protein, serine/threonine protein kinase, Ubiquitin-conjugating enzyme variant-MMS2, NADH-ubiquinone oxidoreductase, Thioredoxin, Pyruvate dehydrogenase E1 VdPDHB, myo-inositol 2-dehydrogenase, and HAD-superfamily hydrolase, showed differential upregulation in the HAV versus WAV isolate in response to plant extracts or after inoculation of potato leaf petioles. This suggests their potential involvement in the observed differential aggressiveness between isolates. However, other genes like glucan endo-1,3-alpha-glucosidase and nuc-1 negative regulatory protein VdPREG showed higher activity in the WAV than in the HAV in response to potato extracts and/or during infection. This, in contrast, may suggest a role in their lower aggressiveness. These findings, along with future functional analysis of selected genes, will contribute to improving our understanding of V. dahliae's pathogenesis. For example, expression of VdPREG negatively regulates phosphorus-acquisition enzymes, which may indicate a lower phosphorus acquisition activity in the WAV. Therefore, integrating the knowledge about the activity of both genes enhancing pathogenicity and those restraining it will provide a guild line for further functional characterization of the most critical genes, thus driving new ideas towards better Verticillium wilt management.

9.
PLoS One ; 16(1): e0245333, 2021.
Article in English | MEDLINE | ID: mdl-33481876

ABSTRACT

The Goss's bacterial wilt pathogen, Clavibacter nebraskensis, of corn is a candidate A1 quarantine organism; and its recent re-emergence and spread in the USA and Canada is a potential biothreat to the crop. We developed and tested an amplicon-based Nanopore detection system for C. nebraskensis (Cn), targeting a purine permease gene. The sensitivity (1 pg) of this system in mock bacterial communities (MBCs) spiked with serially diluted DNA of C. nebraskensis NCPPB 2581T is comparable to that of real-time PCR. Average Nanopore reads increased exponentially from 125 (1pg) to about 6000 reads (1000 pg) after a 3-hr run-time, with 99.0% of the reads accurately assigned to C. nebraskensis. Three run-times were used to process control MBCs, Cn-spiked MBCs, diseased and healthy leaf samples. The mean Nanopore reads doubled as the run-time is increased from 3 to 6 hrs while from 6 to 12 hrs, a 20% increment was recorded in all treatments. Cn-spiked MBCs and diseased corn leaf samples averaged read counts of 5,100, 11,000 and 14,000 for the respective run-times, with 99.8% of the reads taxonomically identified as C. nebraskensis. The control MBCs and healthy leaf samples had 47 and 14 Nanopore reads, respectively. 16S rRNA bacteriomic profiles showed that Sphingomonas (22.7%) and Clavibacter (21.2%) were dominant in diseased samples while Pseudomonas had only 3.5% relative abundance. In non-symptomatic leaf samples, however, Pseudomonas (20.0%) was dominant with Clavibacter at 0.08% relative abundance. This discrepancy in Pseudomonas abundance in the samples was corroborated by qPCR using EvaGreen chemistry. Our work outlines a new useful tool for diagnosis of the Goss's bacterial wilt disease; and provides the first insight on Pseudomonas community dynamics in necrotic leaf lesions.


Subject(s)
Clavibacter/genetics , Nanopore Sequencing/methods , Plant Diseases/microbiology , Zea mays/microbiology , Bacterial Proteins/genetics , Clavibacter/isolation & purification , DNA, Bacterial/genetics , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Nucleobase Transport Proteins/genetics , Plant Leaves/microbiology , RNA, Ribosomal, 16S/genetics
10.
Phytopathology ; 111(8): 1410-1419, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33406852

ABSTRACT

Reactive oxygen species (ROSs) represent one of the first lines of plants' biochemical defense against pathogens. Plants' respiratory burst oxidase homologs (RBOHs) produce ROSs as byproducts in several cellular compartments. In potato tubers, Solanum tuberosum respiratory burst oxidase homolog (StRBOHs) are involved in suberization and healing of wounded tissues. StRbohA has been tested in the model plant Arabidopsis thaliana, which led to enhanced plant defense against the soilborne pathogen Verticillium dahliae. Here, we showed that overexpressing StRbohA in potato plants increases plant tolerance to the oomycete Phytophthora infestans, the causal agent of late blight disease. Transgenic potato plants expressing StRbohA showed reduced disease symptoms (necrosis) compared with the wild type. In parallel, the expression of pathogenesis-related genes (PRs); RBOHs; antioxidation-related genes CPRX1, PRX2, APRX1, CAT1, and CAT2; and genes involved in the biosynthesis pathways of jasmonic and salicylic acids (ICS, PAL1, PAL2, LOX1, LOX2, and LOX3) exhibited significant increases in transgenic plants in response to infection. After higher expression of RBOHs, ROSs accumulated more in inoculation sites of the transgenic plants. ROSs act as signals that activate gene expression in the salicylic acid (SA) biosynthesis pathway, leading to the accumulation of SA and triggering SA-based defense mechanisms. SA-responsive PRs showed higher expression in the transgenic plants, which resulted in the restriction of pathogen growth in plant tissues. These results demonstrate the effective role of StRbohA in increasing potato defense against P. infestans.


Subject(s)
Phytophthora infestans , Solanum tuberosum , Ascomycota , NADPH Oxidases , Plant Diseases , Plant Proteins/genetics , Plants, Genetically Modified , Solanum tuberosum/genetics
11.
Proteomes ; 9(1)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435483

ABSTRACT

The Gram-positive bacterium Clavibacter nebraskensis (Cn) causes Goss's wilt and leaf blight on corn in the North American Central Plains with yield losses as high as 30%. Cn strains vary in aggressiveness on corn, with highly aggressive strains causing much more serious symptoms and damage to crops. Since Cn inhabits the host xylem, we investigated differences in the secreted proteomes of Cn strains to determine whether these could account for phenotypic differences in aggressiveness. Highly and a weakly aggressive Cn strains (Cn14-15-1 and DOAB232, respectively) were cultured, in vitro, in the xylem sap of corn (CXS; host) and tomato (TXS; non-host). The secretome of the Cn strains were extracted and processed, and a comparative bottom-up proteomics approach with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine their identities and concentration. Relative quantitation of peptides was based on precursor ion intensities to measure protein abundances. In total, 745 proteins were identified in xylem sap media. In CXS, a total of 658 and 396 proteins were identified in strains Cn14-5-1 and DOAB232, respectively. The unique and the differentially abundant proteins in the secretome of strain Cn14-5-1 were higher in either sap medium compared to DOAB232. These proteins were sorted using BLAST2GO and assigned to 12 cellular functional processes. Virulence factors, e.g., cellulase, ß-glucosidase, ß-galactosidase, chitinase, ß-1,4-xylanase, and proteases were generally higher in abundance in the aggressive Cn isolate. This was corroborated by enzymatic activity assays of cellulase and protease in CXS. These proteins were either not detected or detected at significantly lower abundance levels in Cn strains grown in non-host xylem sap (tomato), suggesting potential factors involved in Cn-host (corn) interactions.

12.
Biology (Basel) ; 9(8)2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32708038

ABSTRACT

This study examined the expression patterns of antioxidative genes and the activity of the corresponding enzymes in the excess moisture-stressed seedlings of soybean in response to seed treatment with polyamines, spermine (Spm) and spermidine (Spd). At the 4 day after planting (DAP) stage, the excess moisture impaired the embryo axis growth, and this effect is associated with the downregulation of superoxide dismutase (GmSOD1) expression and SOD activity in the cotyledon. Seed treatment with Spm reversed the effects of excess moisture on embryo axis growth partly through enhancing glutathione reductase (GR) activity, in both the cotyledon and embryo axis, although no effect on the GmGR expression level was evident. Excess moisture inhibited the shoot and root growth in 7 DAP seedlings, and this is associated with decreased activities of GR in the shoot and SOD in the root. The effect of excess moisture on shoot and root growth was reversed by seed treatment with Spd, and this was mediated by the increased activities of ascorbate peroxidase (APX), catalase (CAT) and GR in the shoot, and APX in the root, however, only GR in the shoot appears to be regulated transcriptionally. Root growth was also reversed by seed treatment with Spm with no positive effect on gene expression and enzyme activity.

13.
Plant Dis ; 104(4): 1076-1086, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32031910

ABSTRACT

Fusarium graminearum is a toxigenic plant pathogen that causes Fusarium head blight (FHB) disease on cereal crops. It has recently shown to have cross-pathogenicity on noncereals (i.e., Fusarium root rot [FRR] on soybean) in Canada and elsewhere. Specific detection and differentiation of this potent toxigenic, trichothecene-producing pathogen among other closely related species is extremely important for disease control and mycotoxin monitoring. Here, we designed a PCR restriction fragment length polymorphism protocol based on the DNA sequence of the translational elongation factor 1α (TEF1α) gene. A unique restriction site to the enzyme HpaII is only found in F. graminearum sensu stricto strains among different Fusarium strains in the F. graminearum species complex (FGSC) and other Fusarium spp. associated with FHB in cereals and FRR in soybean. Partial amplification of the TEF1α gene with newly designed primers mh1/mh2 generated a 459-bp PCR fragment. Restriction digestion of the generated fragments with the HpaII enzyme generated a unique restriction pattern that can rapidly and accurately differentiate F. graminearum sensu stricto among all other Fusarium spp. A primer pair (FgssF/FgssR) specific to F. graminearum sensu stricto also was designed and can distinguish F. graminearum sensu stricto from all other Fusarium spp. in the FGSC and other closely related Fusarium spp. involved in FHB and FRR. This finding will be very useful for the specific detection of F. graminearum sensu stricto for diagnostic purposes as well as for the accurate detection of this pathogen in breeding and other research purposes.


Subject(s)
Fusarium , Canada , Peptide Elongation Factor 1 , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Triticum
14.
Front Plant Sci ; 10: 823, 2019.
Article in English | MEDLINE | ID: mdl-31333690

ABSTRACT

The phytopathogenic fungus Leptosphaeria maculans causes the blackleg disease on Brassica napus, resulting in severe loss of rapeseed production. Breeding of resistant cultivars containing race-specific resistance genes is provably effective to combat this disease. While two allelic resistance genes LepR3 and Rlm2 recognizing L. maculans avirulence genes AvrLm1 and AvrLm2 at plant apoplastic space have been cloned in B. napus, the downstream gene expression network underlying the resistance remains elusive. In this study, transgenic lines expressing LepR3 and Rlm2 were created in the susceptible "Westar" cultivar and inoculated with L. maculans isolates containing different sets of AvrLm1 and AvrLm2 for comparative transcriptomic analysis. Through grouping the RNA-seq data based on different levels of defense response, we find LepR3 and Rlm2 orchestrate a hierarchically regulated gene expression network, consisting of induced ABA acting independently of the disease reaction, activation of signal transduction pathways with gradually increasing intensity from compatible to incompatible interaction, and specifically induced enzymatic and chemical actions contributing to hypersensitive response with recognition of AvrLm1 and AvrLm2. This study provides an unconventional investigation into LepR3 and Rlm2-mediated plant defense machinery and adds novel insight into the interaction between surface-localized receptor-like proteins (RLPs) and apoplastic fungal pathogens.

15.
Mol Plant Microbe Interact ; 32(8): 1001-1012, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30938576

ABSTRACT

Our study investigated disease resistance in the Brassica napus-Leptosphaeria maculans pathosystem using a combination of laser microdissection, dual RNA sequencing, and physiological validations of large-scale gene sets. The use of laser microdissection improved pathogen detection and identified putative L. maculans effectors and lytic enzymes operative during host colonization. Within 24 h of inoculation, we detected large shifts in gene activity in resistant cotyledons associated with jasmonic acid and calcium signaling pathways that accelerated the plant defense response. Sequencing data were validated through the direct quantification of endogenous jasmonic acid levels. Additionally, resistance against L. maculans was abolished when the calcium chelator EGTA was applied to the inoculation site, providing physiological evidence of the role of calcium in B. napus immunity against L. maculans. We integrated gene expression data with all available information on cis-regulatory elements and transcription factor binding affinities to better understand the gene regulatory networks underpinning plant resistance to hemibiotrophic pathogens. These in silico analyses point to early cellular reprogramming during host immunity that are coordinated by CAMTA, BZIP, and bHLH transcription factors. Together, we provide compelling genetic and physiological evidence into the programming of plant resistance against fungal pathogens.


Subject(s)
Ascomycota , Brassica napus , Disease Resistance , Host-Pathogen Interactions , Transcriptome , Ascomycota/physiology , Brassica napus/genetics , Brassica napus/immunology , Brassica napus/microbiology , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
16.
Plant Physiol Biochem ; 122: 121-128, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29223021

ABSTRACT

Considering the high incidence of white mold caused by Sclerotinia sclerotiorum in a variety of field crops and vegetables, different control strategies are needed to keep the disease under economical threshold. This study assessed the effect of foliar application of a calcium formulation on disease symptoms, oxalic acid production, and on the oxidative stress metabolism in soybean plants inoculated with each of two isolates of the pathogen that have contrasting aggressiveness (HA, highly-aggressive versus WA, weakly-aggressive). Changes in reactive oxygen species (ROS) levels in soybean plants inoculated with S. sclerotiorum isolates were assessed at 6, 24, 48 and 72 h post inoculation (hpi). Generation of ROS including hydrogen peroxide (H2O2), anion superoxide (O2-) and hydroxyl radical (OH) was evaluated. Inoculation with the WA isolate resulted in more ROS accumulation compared to the HA isolate. Pre-treatment with the calcium formulation restored ROS production in plants inoculated with the HA isolate. We also noted a marked decrease in oxalic acid content in the leaves inoculated with the HA isolate in presence of calcium, which coincided with an increase in plant ROS production. The expression patterns of genes involved in ROS detoxification in response to the calcium treatments and/or inoculation with S. Sclerotiorum isolates were monitored by RT-qPCR. All of the tested genes showed a higher expression in response to inoculation with the WA isolate. The expression of most genes tested peaked at 6 hpi, which preceded ROS accumulation in the soybean leaves. Overall, these data suggest that foliar application of calcium contributes to a decrease in oxalic acid production and disease, arguably via modulation of the ROS metabolism.


Subject(s)
Ascomycota/growth & development , Calcium/pharmacology , Glycine max , Oxidative Stress/drug effects , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Glycine max/metabolism , Glycine max/microbiology
17.
Front Plant Sci ; 8: 399, 2017.
Article in English | MEDLINE | ID: mdl-28400778

ABSTRACT

This study aimed to dissect the function of the Isochorismatase Hydrolase (ICSH1) gene in Verticillium dahliae's pathogenesis on potato. VdICSH1 was up-regulated in V. dahliae after induction with extracts from potato tissues. Its expression increased more in response to root extracts than to leaf and stem extracts. However, such expression in response to root extracts was not significantly different in the highly and weakly aggressive isolates tested. During infection of detached potato leaves, VdICSH1 expression increased significantly in the highly aggressive isolate compared to the weakly aggressive one. We generated icsh1 mutants from a highly aggressive isolate of V. dahliae and compared their pathogenicity with that of the original wild type strain. The analysis showed that this gene is required for full virulence of V. dahliae on potatoes. When we previously found differential accumulation of ICSH1 protein in favor of the highly aggressive isolate, as opposed to the weakly aggressive one, we had hypothesized that ICSH would interfere with the host's defense SA-based signaling. Here, we measured the accumulation of both salicylic acid (SA) and jasmonic acid (JA) in potato plants inoculated with an icsh1 mutant in comparison with the wild type strain. The higher accumulation of bound SA in the leaves in response to the icsh1 mutant compared to the wild type confirms the hypothesis that ICSH1 interferes with SA. However, the different trends in SA and JA accumulation in potato in the roots and in the stems at the early infection stages compared to the leaves at later stages indicate that they are both associated to potato defenses against V. dahliae. The expression of members of the isochorismatase family in the icsh1 mutants compensate that of ICSH1 transcripts, but this compensation disappears in presence of the potato leaf extracts. This study indicates ICSH1's involvement in V. dahliae's pathogenicity and provides more insight into its alteration of the SA/JA defense signaling's networking.

18.
C R Biol ; 339(9-10): 399-407, 2016.
Article in English | MEDLINE | ID: mdl-27492010

ABSTRACT

Bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae (Xoo), a most destructive disease of rice, mostly in Asia, including Bangladesh. Altogether 96 isolates of Xoo were collected from 19 rice-growing districts of Bangladesh in both the rain-fed and irrigated seasons of 2014 to assess their pathotypic and genetic variation. Pathotypic analyses were carried out on a set of 12 Near Isogenic Lines (NILs) of rice containing a single resistance gene and two check varieties IR24 and TN1 by the leaf clipping inoculation method. A total of 24 pathotypes were identified based on their virulence patterns on the NILs tested. Among these, pathotypes VII, XII and XIV, considered as major, containing a maximum number of isolates (9.38% each), are frequently distributed in seven northern to mid-eastern districts of Bangladesh. The most virulent pathotype I was recorded in the Habiganj and Brahmanbaria districts. The molecular analysis of variability among the isolates was carried out through PCR analysis using multi-locus primers Jel1 and Jel2 (based on the repetitive element IS1112 in the Xoo genome). Using the genotypic data, a dendrogram was constructed with 17 clusters along with 17 molecular haplotypes at the 65% similarity index. Cluster I was composed of 46 isolates considered as major, whereas clusters X, XI, XII and XVII were represented by a single isolate. A phenogram was constructed based on virulence to interpret the relationship between the pathotypes and the molecular haplotypes. At the 50% similarity level, among 10 clusters, cluster I, considered as major, consisted of a maximum of 10 pathotypes out of 24. In case of haplotypes, a maximum of 7 haplotypes were obtained from pathotype XII, whereas pathotypes IX, X, XV, XXII and XXIV were represented by a single haplotype. However, the present study revealed that different isolates belonging to the same pathotypes belonged to different haplotypes. Conversely, genetically similar haplotypes were also detected from different pathotypes collected from separate districts. This relationship appeared due to a high degree of DNA polymorphism among strains within many pathotypes existing in Bangladesh.


Subject(s)
Plant Diseases/microbiology , Xanthomonas/genetics , Bangladesh , DNA, Bacterial/genetics , Disease Resistance/genetics , Genetic Variation , Haplotypes , Oryza/microbiology , Plant Leaves/microbiology , Polymorphism, Genetic/genetics
19.
Phytopathology ; 106(12): 1473-1485, 2016 12.
Article in English | MEDLINE | ID: mdl-27452898

ABSTRACT

The reemergence of the Goss's bacterial wilt and blight disease in corn in the United States and Canada has prompted investigative research to better understand the genome organization. In this study, we generated a draft genome sequence of Clavibacter michiganensis subsp. nebraskensis strain DOAB 395 and performed genome and proteome analysis of C. michiganensis subsp. nebraskensis strains isolated in 2014 (DOAB 397 and DOAB 395) compared with the type strain, NCPPB 2581 (isolated over 40 years ago). The proteomes of strains DOAB 395 and DOAB 397 exhibited a 99.2% homology but had 92.1 and 91.8% homology, respectively, with strain NCPPB 2581. The majority (99.9%) of the protein sequences had a 99.6 to 100% homology between C. michiganensis subsp. nebraskensis strains DOAB 395 and DOAB 397, with only four protein sequences (0.1%) exhibiting a similarity <70%. In contrast, 3.0% of the protein sequences of strain DOAB 395 or DOAB 397 showed low homologies (<70%) with the type strain NCPPB 2581. The genome data were exploited for the development of a multiplex TaqMan real-time polymerase chain reaction (PCR) tool for rapid detection of C. michiganensis subsp. nebraskensis. The specificity of the assay was validated using 122 strains of Clavibacter and non-Clavibacter spp. A blind test and naturally infected leaf samples were used to confirm specificity. The sensitivity (0.1 to 1.0 pg) compared favorably with previously reported real-time PCR assays. This tool should fill the current gap for a reliable diagnostic technique.


Subject(s)
Genome, Bacterial/genetics , Micrococcaceae/genetics , Plant Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , Zea mays/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Micrococcaceae/isolation & purification , Multiplex Polymerase Chain Reaction/methods , Phylogeny , Sensitivity and Specificity , Sequence Analysis, DNA
20.
Plant Sci ; 243: 71-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26795152

ABSTRACT

1-Deoxy-D-xylulose 5-phosphate synthase (DXS) catalyzes the initial step of the plastidial 2C-methyl-D-erythritol-4-phosphate (DOXP-MEP) pathway involved in isoprenoid biosynthesis. In this study, we cloned the complete cDNA of potato DXS gene that was designated StDXS1. StDXS1 cDNA encodes for 719 amino acid residues, with MW of 77.8 kDa, and is present in one copy in the potato genome. Phylogenetic analysis and protein sequence alignments assigned StDXS1 to a group with DXS homologues from closely related species and exhibited homodomain identity with known DXS proteins from other plant species. Late blight symptoms occurred in parallel with a reduction in StDXS1 transcript levels, which may be associated with the levels of isoprenoids that contribute to plant protection against pathogens. Subcellular localization indicated that StDXS1 targets the chloroplasts where isoprenoids are synthesized. Arabidopsis expressing StDXS1 showed a higher accumulation of carotenoids and chlorophyll as compared to wild type controls. Lower levels of ABA and GA were detected in the transgenic DXS lines as compared to control plants, which reflected on higher germination rates of the transgenic DXS lines. No changes were detected in JA or SA contents. Selected downstream genes in the DOXP-MEP pathway, especially GGPPS genes, were up-regulated in the transgenic lines.


Subject(s)
Gene Expression Regulation, Plant , Phytophthora infestans/physiology , Plant Diseases/genetics , Plant Proteins/genetics , Transferases/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/microbiology , Cloning, Molecular , DNA, Complementary/genetics , DNA, Complementary/metabolism , DNA, Plant/genetics , DNA, Plant/metabolism , Eicosapentaenoic Acid/metabolism , Glucans/metabolism , Molecular Sequence Data , Phylogeny , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Sequence Analysis, DNA , Transferases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...