Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 4714, 2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33633214

ABSTRACT

We report high optical enhancement in Ag/Au alloys and porous gold nanostructures using Surface Enhanced Raman Spectroscopy (SERS) technique. Scanning electron microscopy investigation shows the formation of Ag/Au alloys particles during irradiation of Ag-Au bilayer deposited on FTO (SnO2:F) substrate by laser fluency equal to 0.5 J/cm2 or 1.0 J/cm2 with 12 ns laser pulse duration. The dealloying process of these Au-Ag alloy particles leads to the formation of Au nanoporous particles. The obtained nanostructures were studied with SERS and revealed a promising enhancement factor in porous Au nanostructure and tunability of localized surface plasmon resonance. The highly dense strong hot spots and large specific area in porous structure of gold nanostructures is the origin of the highly enhancement factor observed experimentally and theoretically. A very good agreement between simulation and experimental results was found confirming the potential of Au/Ag alloys and particularly porous gold nanostructure in SERS application.

2.
Phys Chem Chem Phys ; 19(46): 31063-31071, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29159349

ABSTRACT

We report on photochemical and photophysical properties produced by Surface Plasmon Resonance (SPR) on metallic nanograins by means of high resolution Functionalized Tip-Enhanced Raman Spectroscopy (F-TERS). This technique relies on a sharp gold tip functionalized with Raman-active molecules to be scanned relatively to plasmonic hot-spots on a surface. We describe the local variation of plasmon-induced Raman enhancement on the surface of nanostructures that also affects the photochemistry while the quantitative interpretation of peak intensities requires the consideration of surface topography near the tip apex. Our F-TERS maps show Raman modes of hot electron reduction of 4-nitrothiophenol (4-NTP) molecules on the tip and indicate at least partial photochemical dimerization. An apparent photo-induced reversibility of this dimerization can be conservatively explained by a local topography feature that we simulate in a finite element environment. Our experimental results reveal a spatial resolution of approximately 10 nm, corresponding to a few hundred 4-NTP molecules exposed to the near-field.

3.
Phys Chem Chem Phys ; 18(44): 30546-30553, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27785487

ABSTRACT

We use apertureless scanning near-field optical microscopy to study the phase separation in chemical beam epitaxy grown Al0.1Ga0.9NxAs1-x alloys. Pits attributed to nitrogen-clustering observed on the Al0.1Ga0.9NxAs1-x surface grown at 420 °C become larger at higher growth temperatures, and 3D islands appear on the surface at 565 °C. Atomic force microscopy phase measurements reveal a composition difference between the islands and the pits, whereas the sample grown at 420 °C appears to be homogeneous. Confocal Raman spectra show that all the N atoms are bonded to Al instead of Ga. Using apertureless scanning near-field optical microscopy, the luminescence of a gold tip is mapped over the surface of the sample grown at 565 °C. We extract the shift of the tip's surface plasmon resonance and determine the variation in the refractive index between the islands and the pits to be close to 0.2. Numerical simulations of the tip luminescence while in contact with the sample predict a similar variation of ∼0.3 in the refractive indices between AlGaAs islands and AlN pits, a substantially smaller value than the difference in the bulk refractive indices of the two media (∼1.8), which we attribute to a convolution of material distribution in an uneven topography. The excellent agreement between simulation and experiments supports the hypothesis of nitrogen-clustering in the pits.

4.
Phys Chem Chem Phys ; 18(14): 9405-11, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-26979589

ABSTRACT

The need for a dedicated spectroscopic technique with nanoscale resolution to characterize SERS substrates pushed us to develop a proof of concept of a functionalized tip-surface enhanced Raman scattering (FTERS) technique. We have been able to map hot spots on semi-continuous gold films; in order to validate our approach we compare our results with photoemission electron microscopy (PEEM) data, the complementary electron microscopy tool to map hot spots on random metallic surfaces. Enhanced Raman intensity maps at high spatial resolution reveal the localisation of hotspots at gaps for many neighboring nanostructures. Finally, we compare our findings with theoretical simulations of the enhancement factor distribution, which confirms a dimer effect as the dominant origin of hot spots.

SELECTION OF CITATIONS
SEARCH DETAIL
...