Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1260393, 2023.
Article in English | MEDLINE | ID: mdl-37790790

ABSTRACT

Soybean is an important global source of plant-based protein. A persistent trend has been observed over the past two decades that soybeans grown in western Canada have lower seed protein content than soybeans grown in eastern Canada. In this study, 10 soybean genotypes ranging in average seed protein content were grown in an eastern location (control) and three western locations (experimental) in Canada. Seed protein and oil contents were measured for all lines in each location. RNA-sequencing and differential gene expression analysis were used to identify differentially expressed genes that may account for relatively low protein content in western-grown soybeans. Differentially expressed genes were enriched for ontologies and pathways that included amino acid biosynthesis, circadian rhythm, starch metabolism, and lipid biosynthesis. Gene ontology, pathway mapping, and quantitative trait locus (QTL) mapping collectively provide a close inspection of mechanisms influencing nitrogen assimilation and amino acid biosynthesis between soybeans grown in the East and West. It was found that western-grown soybeans had persistent upregulation of asparaginase (an asparagine hydrolase) and persistent downregulation of asparagine synthetase across 30 individual differential expression datasets. This specific difference in asparagine metabolism between growing environments is almost certainly related to the observed differences in seed protein content because of the positive correlation between seed protein content at maturity and free asparagine in the developing seed. These results provided pointed information on seed protein-related genes influenced by environment. This information is valuable for breeding programs and genetic engineering of geographically optimized soybeans.

2.
Plants (Basel) ; 11(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145738

ABSTRACT

Over the past two decades soybeans grown in western Canada have persistently had lower seed protein than those grown in eastern Canada. To understand the discrepancy in seed protein content between eastern- and western-grown soybeans, RNA-seq and differential expression analysis have been investigated. Ten soybean genotypes, ranging from low to high in seed protein content, were grown in four locations across eastern (Ottawa) and western (Morden, Brandon, and Saskatoon) Canada. Differential expression analysis revealed 34 differentially expressed genes encoding Glycine max Sugars Will Eventually be Exported Transporters (GmSWEETs), including paralogs GmSWEET29 and GmSWEET34 (AtSWEET2 homologs) that were consistently upregulated across all ten genotypes in each of the western locations over three years. GmSWEET29 and GmSWEET34 are likely candidates underlying the lower seed protein content of western soybeans. GmSWEET20 (AtSWEET12 homolog) was downregulated in the western locations and may also play a role in lower seed protein content. These findings are valuable for improving soybean agriculture in western growing regions, establishing more strategic and efficient agricultural practices.

3.
Int J Mol Sci ; 24(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36613666

ABSTRACT

Soybean (Glycine max (L.) Merr.) is among the most valuable crops based on its nutritious seed protein and oil. Protein quality, evaluated as the ratio of glycinin (11S) to ß-conglycinin (7S), can play a role in food and feed quality. To help uncover the underlying differences between high and low protein soybean varieties, we performed differential expression analysis on high and low total protein soybean varieties and high and low 11S soybean varieties grown in four locations across Eastern and Western Canada over three years (2018-2020). Simultaneously, ten individual differential expression datasets for high vs. low total protein soybeans and ten individual differential expression datasets for high vs. low 11S soybeans were assessed, for a total of 20 datasets. The top 15 most upregulated and the 15 most downregulated genes were extracted from each differential expression dataset and cross-examination was conducted to create shortlists of the most consistently differentially expressed genes. Shortlisted genes were assessed for gene ontology to gain a global appreciation of the commonly differentially expressed genes. Genes with roles in the lipid metabolic pathway and carbohydrate metabolic pathway were differentially expressed in high total protein and high 11S soybeans in comparison to their low total protein and low 11S counterparts. Expression differences were consistent between East and West locations with the exception of one, Glyma.03G054100. These data are important for uncovering the genes and biological pathways responsible for the difference in seed protein between high and low total protein or 11S cultivars.


Subject(s)
Glycine max , Soybean Proteins , Glycine max/genetics , Glycine max/metabolism , Soybean Proteins/genetics , Soybean Proteins/metabolism , Canada , Seeds/genetics , Seeds/chemistry
4.
Plants (Basel) ; 7(3)2018 Sep 08.
Article in English | MEDLINE | ID: mdl-30205575

ABSTRACT

Plant breeders and agricultural scientists of the 21st century are challenged to increase the yield potentials of crops to feed the growing world population. Climate change, the resultant stresses and increasing nutrient deficiencies are factors that are to be considered in designing modern plant breeding pipelines. Underutilized food legumes have the potential to address these issues and ensure food security in developing nations of the world. Food legumes in the past have drawn limited research funding and technological attention when compared to cereal crops. Physiological breeding strategies that were proven to be successful in cereals are to be adapted to legume crop improvement to realize their potential. The gap between breeders and physiologists should be narrowed by collaborative approaches to understand complex traits in legumes. This review discusses the potential of physiology based approaches in food legume breeding and how they impact yield gains and abiotic stress tolerance in these crops. The influence of roots and root system architectures in food legumes' breeding is also discussed. Molecular breeding to map the relevant physiological traits and the potentials of gene editing those traits are detailed. It is imperative to unlock the potentials of these underutilized crops to attain sustainable environmental and nutritional food security.

SELECTION OF CITATIONS
SEARCH DETAIL
...