Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (176)2021 10 19.
Article in English | MEDLINE | ID: mdl-34747399

ABSTRACT

Epilepsy represents one of the most common neurological disorders, affecting an estimated 50 million people worldwide. Recent advances in genetic research have uncovered a large spectrum of genes implicated in various forms of epilepsy, highlighting the heterogeneous nature of this disorder. Appropriate animal models are essential for investigating the pathological mechanisms triggered by genetic mutations implicated in epilepsy and for developing specialized, targeted therapies. In recent years, zebrafish has emerged as a valuable vertebrate organism for modeling epilepsies, with the use of both genetic manipulation and exposure to known epileptogenic drugs, such as pentylenetetrazole (PTZ), to identify novel anti-epileptic therapeutics. Deleterious mutations in the mTOR regulator DEPDC5 have been associated with various forms of focal epilepsies and knock-down of the zebrafish orthologue causes hyperactivity associated with spontaneous seizure-like episodes, as well as enhanced electrographic activity and characteristic turn wheel swimming. Here, we described the method involved in generating the DEPDC5 loss-of-function model and illustrate the protocol for assessing motor activity at 28 and 48 h post fertilization (hpf), as well as a method for recording field activity in the zebrafish optic tectum. An illustration of the effect of the epileptogenic drug PTZ on neuronal activity over time is also provided.


Subject(s)
Epilepsy , Zebrafish , Animals , Disease Models, Animal , Epilepsy/chemically induced , Epilepsy/drug therapy , Epilepsy/genetics , Humans , Pentylenetetrazole/therapeutic use , Seizures/pathology , Zebrafish/genetics
2.
Nat Commun ; 12(1): 337, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436585

ABSTRACT

Due to the Heisenberg-Gabor uncertainty principle, finite oscillation transients are difficult to localize simultaneously in both time and frequency. Classical estimators, like the short-time Fourier transform or the continuous-wavelet transform optimize either temporal or frequency resolution, or find a suboptimal tradeoff. Here, we introduce a spectral estimator enabling time-frequency super-resolution, called superlet, that uses sets of wavelets with increasingly constrained bandwidth. These are combined geometrically in order to maintain the good temporal resolution of single wavelets and gain frequency resolution in upper bands. The normalization of wavelets in the set facilitates exploration of data with scale-free, fractal nature, containing oscillation packets that are self-similar across frequencies. Superlets perform well on synthetic data and brain signals recorded in humans and rodents, resolving high frequency bursts with excellent precision. Importantly, they can reveal fast transient oscillation events in single trials that may be hidden in the averaged time-frequency spectrum by other methods.

3.
Ann Clin Transl Neurol ; 5(5): 510-523, 2018 May.
Article in English | MEDLINE | ID: mdl-29761115

ABSTRACT

OBJECTIVE: DEPDC5 was identified as a major genetic cause of focal epilepsy with deleterious mutations found in a wide range of inherited forms of focal epilepsy, associated with malformation of cortical development in certain cases. Identification of frameshift, truncation, and deletion mutations implicates haploinsufficiency of DEPDC5 in the etiology of focal epilepsy. DEPDC5 is a component of the GATOR1 complex, acting as a negative regulator of mTOR signaling. METHODS: Zebrafish represents a vertebrate model suitable for genetic analysis and drug screening in epilepsy-related disorders. In this study, we defined the expression of depdc5 during development and established an epilepsy model with reduced Depdc5 expression. RESULTS: Here we report a zebrafish model of Depdc5 loss-of-function that displays a measurable behavioral phenotype, including hyperkinesia, circular swimming, and increased neuronal activity. These phenotypic features persisted throughout embryonic development and were significantly reduced upon treatment with the mTORC1 inhibitor, rapamycin, as well as overexpression of human WT DEPDC5 transcript. No phenotypic rescue was obtained upon expression of epilepsy-associated DEPDC5 mutations (p.Arg487* and p.Arg485Gln), indicating that these mutations cause a loss of function of the protein. INTERPRETATION: This study demonstrates that Depdc5 knockdown leads to early-onset phenotypic features related to motor and neuronal hyperactivity. Restoration of phenotypic features by WT but not epilepsy-associated Depdc5 mutants, as well as by mTORC1 inhibition confirm the role of Depdc5 in the mTORC1-dependent molecular cascades, defining this pathway as a potential therapeutic target for DEPDC5-inherited forms of focal epilepsy.

4.
Article in English | MEDLINE | ID: mdl-25126450

ABSTRACT

BACKGROUND: The visual temporal discrimination threshold (TDT) is the shortest time interval at which one can determine two stimuli to be asynchronous and meets criteria for a valid endophenotype in adult-onset idiopathic focal dystonia, a poorly penetrant disorder. Temporal discrimination is assessed in the hospital laboratory; in unaffected relatives of multiplex adult-onset dystonia patients distance from the hospital is a barrier to data acquisition. We devised a portable headset method for visual temporal discrimination determination and our aim was to validate this portable tool against the traditional laboratory-based method in a group of patients and in a large cohort of healthy controls. METHODS: Visual TDTs were examined in two groups 1) in 96 healthy control participants divided by age and gender, and 2) in 33 cervical dystonia patients, using two methods of data acquisition, the traditional table-top laboratory-based system, and the novel portable headset method. The order of assessment was randomized in the control group. The results obtained by each technique were compared. RESULTS: Visual temporal discrimination in healthy control participants demonstrated similar age and gender effects by the headset method as found by the table-top examination. There were no significant differences between visual TDTs obtained using the two methods, both for the control participants and for the cervical dystonia patients. Bland-Altman testing showed good concordance between the two methods in both patients and in controls. DISCUSSION: The portable headset device is a reliable and accurate method for visual temporal discrimination testing for use outside the laboratory, and will facilitate increased TDT data collection outside of the hospital setting. This is of particular importance in multiplex families where data collection in all available members of the pedigree is important for exome sequencing studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...