Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 170: 107441, 2022 05.
Article in English | MEDLINE | ID: mdl-35189368

ABSTRACT

Organellar genomes often carry group II introns, which occasionally encode proteins called maturases that are important for splicing. The number of introns varies substantially among various organellar genomes, and bursts of introns have been observed in multiple eukaryotic lineages, including euglenophytes, with more than 100 introns in their plastid genomes. To examine the evolutionary diversity and history of maturases, an essential gene family among euglenophytes, we searched for their homologs in newly sequenced and published plastid genomes representing all major euglenophyte lineages. We found that maturase content in plastid genomes has a patchy distribution, with a maximum of eight of them present in Eutreptiella eupharyngea. The most basal lineages of euglenophytes, Eutreptiales, share the highest number of maturases, but the lowest number of introns. We also identified a peculiar convoluted structure of a gene located in an intron, in a gene within an intron, within yet another gene, present in some Eutreptiales. Further investigation of functional domains of identified maturases show that most of them lost at least one of the functional domains, which implies that the patchy maturase distribution is due to frequent inactivation and eventual loss over time. Finally, we identified the diversified evolutionary origin of analysed maturases, which were acquired along with the green algal plastid or horizontally transferred. These findings indicate that euglenophytes' plastid maturases have experienced a surprisingly dynamic history due to gains from diversified donors, their retention, and loss.


Subject(s)
Euglenida , Genome, Chloroplast , Euglenida/genetics , Evolution, Molecular , Introns/genetics , Phylogeny , Plastids/genetics
2.
J Eukaryot Microbiol ; 65(5): 648-660, 2018 07.
Article in English | MEDLINE | ID: mdl-29418041

ABSTRACT

The latest studies of chloroplast genomes of phototrophic euglenoids yielded different results according to intrageneric variability such as cluster arrangement or diversity of introns. Although the genera Euglena and Monomorphina in those studies show high syntenic arrangements at the intrageneric level, the two investigated Eutreptiella species comprise low synteny. Furthermore Trachelomonas volvocina show low synteny to the chloroplast genomes of the sister genera Monomorphina aenigmatica, M. parapyrum, Cryptoglena skujae, Euglenaria anabaena, Strombomonas acuminata, all of which were highly syntenic. Consequently, this study aims at the analysis of the cpGenome of Trachelomonas grandis and a comparative examination of T. volvocina to investigate whether the cpGenomes are of such resemblance as could be expected for a genus within the Euglenaceae. Although these analyses resulted in almost identical gene content to other Euglenaceae, the chloroplast genome showed significant novelties: In the rRNA operon, we detected group II introns, not yet found in any other cpGenome of Euglenaceae and a substantially heterogeneous cluster arrangement in the genus Trachelomonas. The phylogenomic analysis with 84 genes of 19 phototrophic euglenoids and 18 cpGenome sequences from Chlorophyta and Streptophyta resulted in a well-supported cpGenome phylogeny, which is in accordance to former phylogenetic analyses.


Subject(s)
Euglenida/genetics , Genome, Chloroplast , Phylogeny , Chloroplasts/genetics , DNA, Chloroplast/genetics , Euglenida/classification , Euglenida/metabolism , Genetic Variation , Introns , Phototrophic Processes , Synteny , rRNA Operon
3.
PeerJ ; 5: e3725, 2017.
Article in English | MEDLINE | ID: mdl-28852596

ABSTRACT

BACKGROUND: Over the last few years multiple studies have been published showing a great diversity in size of chloroplast genomes (cpGenomes), and in the arrangement of gene clusters, in the Euglenales. However, while these genomes provided important insights into the evolution of cpGenomes across the Euglenales and within their genera, only two genomes were analyzed in regard to genomic variability between and within Euglenales and Eutreptiales. To better understand the dynamics of chloroplast genome evolution in early evolving Eutreptiales, this study focused on the cpGenome of Eutreptiella pomquetensis, and the spread and peculiarities of introns. METHODS: The Etl. pomquetensis cpGenome was sequenced, annotated and afterwards examined in structure, size, gene order and intron content. These features were compared with other euglenoid cpGenomes as well as those of prasinophyte green algae, including Pyramimonas parkeae. RESULTS AND DISCUSSION: With about 130,561 bp the chloroplast genome of Etl. pomquetensis, a basal taxon in the phototrophic euglenoids, was considerably larger than the two other Eutreptiales cpGenomes sequenced so far. Although the detected quadripartite structure resembled most green algae and plant chloroplast genomes, the gene content of the single copy regions in Etl. pomquetensis was completely different from those observed in green algae and plants. The gene composition of Etl. pomquetensis was extensively changed and turned out to be almost identical to other Eutreptiales and Euglenales, and not to P. parkeae. Furthermore, the cpGenome of Etl. pomquetensis was unexpectedly permeated by a high number of introns, which led to a substantially larger genome. The 51 identified introns of Etl. pomquetensis showed two major unique features: (i) more than half of the introns displayed a high level of pairwise identities; (ii) no group III introns could be identified in the protein coding genes. These findings support the hypothesis that group III introns are degenerated group II introns and evolved later.

4.
J Eukaryot Microbiol ; 64(1): 31-44, 2017 01.
Article in English | MEDLINE | ID: mdl-27254767

ABSTRACT

A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1.


Subject(s)
Euglena/genetics , Genome, Chloroplast/genetics , Introns , Base Sequence , Biological Evolution , Chloroplasts/genetics , DNA, Chloroplast/genetics , DNA, Chloroplast/isolation & purification , DNA, Protozoan/genetics , Euglena/classification , Evolution, Molecular , Exons , Gene Order , Multigene Family , Open Reading Frames , Protozoan Proteins/genetics , Sequence Analysis , rRNA Operon
SELECTION OF CITATIONS
SEARCH DETAIL
...