Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36013769

ABSTRACT

Coatings are now frequently used on cutting tool inserts in the metal production sector due to their better wear resistance and heat barrier effect. Protective hard coatings with a thickness of a few micrometers are created on cutting tools using physical or chemical vapor deposition (PVD, CVD) to increase their application performance. Different coating materials are utilized for a wide range of cutting applications, generally in bi-or multilayer stacks, and typically belong to the material classes of nitrides, carbides, carbonitrides, borides, boronitrides, or oxides. The current study examines typical hard coatings deposited by PVD and CVD in the corresponding material classes. The present state of research is reviewed, and pioneering work on this subject as well as recent results leading to the construction of complete "synthesis-structure-property-application performance" correlations of the different coatings are examined. When compared to uncoated tools, tool coatings prevent direct contact between the workpiece and the tool substrate, altering cutting temperature and machining performance. The purpose of this paper is to examine the effect of cutting-zone temperatures on multilayer coating characteristics during the metal-cutting process. Simplified summary and comparisons of various coating types on cutting tools based on distinct deposition procedures. Furthermore, existing and prospective issues for the hard coating community are discussed.

2.
Bioengineered ; 11(1): 679-692, 2020 12.
Article in English | MEDLINE | ID: mdl-32543986

ABSTRACT

Fracture in the hip joint is a major and quite common health issue, particularly for the elderly. The loads exploited by the lower limbs are very acute and severe; in the femur, they can be several folds higher than the whole weight of the body. Nanotechnology and nanocomposites offer great potential in biomedical applications. The organic materials are more biocompatible. Mechanical properties like strength and hardness are challenging parameters which control the selection of a joint. HDPE in its pure form has been successfully used as a prosthetic foot (external) but failed as an implant material due to limited mechanical properties. High-density polyethylene thermoplastic polymer (HDPE) and multi-walled carbon nanotubes (MWCNT)/Nano-Alumina is selected as a potential material for a biomedical implant and its mechanical properties and biocompatibility have been discussed. HDPE/MWCNT/Alumina (Al2O3) nanocomposites have not been explored yet for prosthetic implants. These nanocomposites were prepared in this investigation in different compositions. Prepared material has been physiochemically characterized to check the morphology and the structure. MWCNTs enhanced hardness and elastic modulus of the HDPE. Optimization of the material composition revealed that hybrid composite with structure (2.4% Al2O3 and 0.6% MWCNT) exhibits better mechanical properties compared to other ratios with 3% MWCNTs and 5% MWCNTs. Thermal gravimetric analysis (TGA) dedicates that the percentage of crystallization has been increased to 6% after adding MWCNT to HDPE. The moisture absorption decreased to 90% with 5% MWCNT. Experimental results of Colorimetric assay (MTT) of a normal human epithelial cell line (1- BJ1) over Al2O3/MWCNT@HDPE showed <20% cytotoxic activity, proving its acceptance for medical use. HDPE/MWCNT/Al2O3 nanocomposites emerged as a candidate material for artificial joints.


Subject(s)
Aluminum Oxide/chemistry , Arthroplasty, Replacement/methods , Biocompatible Materials/chemistry , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Polyethylene/chemistry , Hip Joint/surgery , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...