Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 13(7): 244, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37346389

ABSTRACT

A simple, rapid, and sensitive electrochemical biosensor based on a screen-printed carbon electrode (SPCE) was developed for onsite detection of E. coli in real time. This work analyzed the effect of aptamer conjugation and PBS buffer solution on the colloidal stability of the silver nanoparticles (AgNPs). Aggregations of the AgNPs after aptamer conjugation in PBS buffer were observed from the particle size distribution analysis. The AgNP-aptamer conjugation and its affinity towards E. coli (DH5α) were confirmed by UV-visible spectrophotometry, which showed a linear increment in the absorption with increasing E.coli concentration. The screen-printed carbon electrodes were modified by drop-casting of AgNPs, which were used as an effective immobilization platform for E. coli-specific aptamers. The modified electrode's surface modification and redox behavior were characterized using cyclic voltammetry. Finally, E. coli was detected using differential pulse voltammetry with an optimized incubation time of 15 min. The developed biosensors showed a linear decrease in current intensity with an increase in the concentration of E. coli. The biosensor had a relative standard deviation (RSD) of 6.91% (n = 3), which showed good reproducibility. The developed biosensors are highly sensitive and have a limit of detection (LOD) as low as 150 CFU/ml. The biosensor showed good selectivity for E.coli coli when comparing the signal response obtained for bacteria other than E.coli. Also, the biosensor was found stable for four weeks at room temperature and showed high recoveries from 95.27% to 107% during the tap water sensitivity validation.

2.
Environ Pollut ; 328: 121201, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36738883

ABSTRACT

Multicomponent wastewater treatment utilising simple and cost-effective materials and methods is an important research topic. This study has reported the fabrication and utilisation of graphene oxide (GO) embedded granular Polyurethane (PU) (GOPU) adsorbent for the treatment of lead ion (Lead ion (Pb(II)), Methylene blue (MB), and E. coli. PU granules were wrapped with GO flakes to improve hydrophilicity, interaction with polluted water, cation-exchange reaction, and binding of pollutants on its surface. Synthesised GOPU granules were characterised by X-Ray Diffraction (XRD), Raman, Fourier transform infrared (FTIR) spectroscopy, and Scanning electron microscopy (SEM) analysis to ensure the successful synthesis of GO and fabrication of GOPU granules. Further, batch and continuous adsorption processes were studied in different operating conditions to evaluate the performance of GOPU granules in practical applications. The kinetic and isotherm analyses revealed that the adsorption of Lead (Pb(II)) ion and Methylene Blue (MB) dye followed the Freundlich and Langmuir isotherm models, respectively, and they showed good agreement with the Pseudo-second-order kinetic model. The adsorption capacities of GOPU granules for the elimination of Pb(II) and MB dye were about 842 mg/g and 899 mg/g, respectively. Additionally, investigations into the fixed bed column revealed that the adsorption column performed best at a flow rate of 5 mL/min and a bed height of 6 cm. Pb(II) adsorption had a bed uptake capacity (qbed) of 88 mg/g and percentage removal efficiency (%R) of 76%. Similarly, MB adsorption had a bed uptake capacity of 202 mg/g and a percentage removal efficiency of 71%. A systematic invention on antibacterial activity toward E. coli showed that The GOPU granules have a removal efficiency of about 100% at an exposure of 24 h. These findings indicated the possible use of GOPU granules as promising adsorbents for various water pollutants.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Pollutants , Lead , Polyurethanes , Methylene Blue/chemistry , Escherichia coli , Graphite/chemistry , Water Pollutants, Chemical/analysis , Adsorption , Kinetics , Spectroscopy, Fourier Transform Infrared , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...