Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Med Cannabis Cannabinoids ; 4(2): 75-85, 2021.
Article in English | MEDLINE | ID: mdl-35224427

ABSTRACT

Cannabis is currently the most consumed illicit substance in the world, and gradual legalization in the USA makes it important to understand the health consequences of the use of this substance. With growing body of evidence that some cannabis ingredients may be beneficial in various aspects of hemostasis, additional research is clearly needed in various clinical areas. In addition to understanding the efficacy, research efforts should also include studies that address any harmful effects of the compounds or administration methods that may result in adverse effects. This review is focused on the cardiometabolic effects of cannabis use. Cardiometabolic diseases are among the leading causes of death in the USA and around the world. The purpose of this review was to provide an overview of the known medicinal benefits of selected cannabis cannabinoids and the known side effects or contraindications. More importantly, we have proposed new questions and signposts in cannabis research to uncover additional medicinal benefits and identify the health hazards with focus on cardiovascular disease.

3.
Article in English | MEDLINE | ID: mdl-32226783

ABSTRACT

Blood-contacting medical devices of different biomaterials are often used to treat various cardiovascular diseases. Thrombus formation is a common cause of failure of cardiovascular devices. Currently, there are no clinically available biomaterials that can totally inhibit thrombosis under the more challenging environments (e.g., low flow in the venous system). Although some biomaterials reduce protein adsorption or cell adhesion, the issue of biomaterial associated with thrombosis and inflammation still exists. To better understand how to develop more thrombosis-resistant medical devices, it is essential to understand the biology and mechano-transduction of thrombus nucleation and progression. In this review, we will compare the mechanisms of thrombus development and progression in the arterial and venous systems. We will address various aspects of thrombosis, starting with biology of thrombosis, mathematical modeling to integrate the mechanism of thrombosis, and thrombus formation on medical devices. Prevention of these problems requires a multifaceted approach that involves more effective and safer thrombolytic agents but more importantly the development of novel thrombosis-resistant biomaterials mimicking the biological characteristics of the endothelium and extracellular matrix tissues that also ameliorate the development and the progression of chronic inflammation as part of the processes associated with the detrimental generation of late thrombosis and neo-atherosclerosis. Until such developments occur, engineers and clinicians must work together to develop devices that require minimal anticoagulants and thrombolytics to mitigate thrombosis and inflammation without causing serious bleeding side effects.

4.
Front Physiol ; 9: 371, 2018.
Article in English | MEDLINE | ID: mdl-29706898

ABSTRACT

Lumen vessel sizing is important for optimization of interventional outcomes for treatment of vascular disease. The objective of this study is to develop an injection-less method to determine the lumen diameter, using multiple frequencies that eliminates the need for saline injections. We utilize the same electrical conductance devices developed for the two-injection method. A mathematical electrical model was devised to estimate the lumen area and diameter of the arteries. In vitro experiments were used to validate the method for various lumen diameters with both 5-5-5 (peripheral) and 2-2-2 (coronary) spacing conductance guidewires. The majority of 11 vessel data fall within one standard deviation and all the data fall within two standard deviations. The results indicate that the two-frequency model can reasonably predict the lumen diameter in an in-vitro test set-up. Our findings show that this approach can potentially translate to in vivo which would enable pull-back to reconstruct the lumen area profile of the vessel.

SELECTION OF CITATIONS
SEARCH DETAIL
...