Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med ; 109: 102574, 2023 May.
Article in English | MEDLINE | ID: mdl-37004360

ABSTRACT

PURPOSE: To assess the impact of the automatic tube current modulation (ATCM) on virtual monoenergetic images (VMIs) quality in dual-source CT(DSCT). MATERIALS AND METHODS: Acquisitions were performed on DSCT using the Mercury phantom. The acquisition parameters for an abdomen-pelvic examination with single-energy CT(SECT) and dual-energy CT(DECT) imaging were used. Acquisitions were performed for each imaging mode using fixed mAs and ATCM. The mAs value was set to obtain a volume CT dose index of 11 mGy in fixed mAs acquisitions. This value was used as the reference mAs in ATCM acquisitions. The noise power spectrum and task-based transfer function at 40,50,60 and 70 keV levels were computed on VMIs and SECT images. The detectability index (d') was calculated for a lesion with an iodine concentration of 10 mg/mL. RESULTS: The noise magnitude on VMIs was higher with the ATCM system than with fixed mAs for all energy levels and section diameters of 21,26 and 31 cm. The noise texture and spatial resolution were similar between the fixed mAs and ATCM acquisitions for both imaging modes. The d' values were lower for all energy levels with ATCM than with fixed mAs acquisitions for 21 and 26 cm diameters by -39.82 ± 9.32%, similar at 31 cm diameter -4.13 ± 0.24% and higher at 36 cm diameter 10.40 ± 6.69%. It was higher on VMIs at all energy levels compared to SECT images. CONCLUSIONS: The ATCM system could be used with DECT imaging to optimize patient exposure without changing the noise texture and spatial resolution of VMIs compared to fixed mAs and SECT.


Subject(s)
Iodine , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Phantoms, Imaging , Cone-Beam Computed Tomography , Radiation Dosage
2.
Eur Radiol ; 31(7): 5324-5334, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33449188

ABSTRACT

OBJECTIVES: To compare the spectral performance of dual-energy CT (DECT) platforms using task-based image quality assessment based on phantom data. MATERIALS AND METHODS: Two CT phantoms were scanned on four DECT platforms: fast kV-switching CT (KVSCT), split filter CT (SFCT), dual-source CT (DSCT), and dual-layer CT (DLCT). Acquisitions on each phantom were performed using classical parameters of abdomen-pelvic examination and a CTDIvol at 10 mGy. Noise power spectrum (NPS) and task-based transfer function (TTF) were evaluated from 40 to 140 keV of virtual monoenergetic images. A detectability index (d') was computed to model the detection task of two contrast-enhanced lesions as function of keV. RESULTS: The noise magnitude decreased from 40 to 70 keV for all DECT platforms, and the highest noise magnitude values were found for KVSCT and SFCT and the lowest for DSCT and DLCT. The average NPS spatial frequency shifted towards lower frequencies as the energy level increased for all DECT platforms, smoothing the image texture. TTF values decreased with the increase of keV deteriorating the spatial resolution. For both simulated lesions, higher detectability (d' value) was obtained at 40 keV for DLCT, DSCT, and SFCT but at 70 keV for KVSCT. The detectability of both simulated lesions was highest for DLCT and DSCT. CONCLUSION: Highest detectability was found for DLCT for the lowest energy levels. The task-based image quality assessment used for the first time for DECT acquisitions showed the benefit of using low keV for the detection of contrast-enhanced lesions. KEY POINTS: • Detectability of both simulated contrast-enhanced lesions was higher for dual-layer CT for the lowest energy levels. • The image noise increased and the image texture changed for the lowest energy levels. • The detectability of both simulated contrast-enhanced lesions was highest at 40 keV for all dual-energy CT platforms except for fast kV-switching platform.


Subject(s)
Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Abdomen/diagnostic imaging , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
3.
Phys Med ; 77: 36-42, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32771702

ABSTRACT

PURPOSE: To assess the impact of iterative reconstructions on image quality and detectability of focal liver lesions in low-energy monochromatic images from a Fast kV-Switching Dual Energy CT (KVSCT) platform. METHODS: Acquisitions on an image-quality phantom were performed using a KVSCT for three dose levels (CTDIvol:12.72/10.76/8.79 mGy). Raw data were reconstructed for five energy levels (40/50/60/70/80 keV) using Filtered Back Projection (FBP) and four levels of ASIR (ASIR30/ASIR50/ASIR70/ASIR100). Noise power spectrum (NPS) and task-based transfer function (TTF) were measured before computing a Detectability index (d') to model the detection task of liver metastasis (LM) and hepatocellular carcinoma (HCC) as function of keV. RESULTS: From 40 to 70 keV, noise-magnitude was reduced on average by -68% ± 1% with FBP; -61% ± 3% with ASIR50 and -52% ± 6% with ASIR100. The mean spatial frequency of the NPS decreased when the energy level decreased and the iterative level increased. TTF values at 50% decreased as the energy level increased and as the percentage of ASIR increased. The detectability of both lesions increased with increasing dose level and percentage of ASIR. For the LM, d' peaked at 70 keV for all reconstruction types, except for ASIR70 at 12.72 mGy and ASIR100, where d' peaked at 50 keV. For HCC, d' peaked at 60 keV for FBP and ASIR30 but peaked at 50 keV for ASIR50, ASIR70 and ASIR100. CONCLUSIONS: Using percentage of ASIR above 50% at low-energy monochromatic images could limit the increase of noise-magnitude, benefit from spatial resolution improvement and hence enhance detectability of subtle low contrast focal liver lesions such as HCC.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Liver Neoplasms/diagnostic imaging , Liver/diagnostic imaging , Tomography, X-Ray Computed/methods , Humans , Phantoms, Imaging , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...