Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mSystems ; 5(6)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33361324

ABSTRACT

Photoheterotrophic bacteria represent an important part of aquatic microbial communities. There exist two fundamentally different light-harvesting systems: bacteriochlorophyll-containing reaction centers or rhodopsins. Here, we report a photoheterotrophic Sphingomonas strain isolated from an oligotrophic lake, which contains complete sets of genes for both rhodopsin-based and bacteriochlorophyll-based phototrophy. Interestingly, the identified genes were not expressed when cultured in liquid organic media. Using reverse transcription quantitative PCR (RT-qPCR), RNA sequencing, and bacteriochlorophyll a quantification, we document that bacteriochlorophyll synthesis was repressed by high concentrations of glucose or galactose in the medium. Coactivation of photosynthesis genes together with genes for TonB-dependent transporters suggests the utilization of light energy for nutrient import. The photosynthetic units were formed by ring-shaped light-harvesting complex 1 and reaction centers with bacteriochlorophyll a and spirilloxanthin as the main light-harvesting pigments. The identified rhodopsin gene belonged to the xanthorhodopsin family, but it lacks salinixanthin antenna. In contrast to bacteriochlorophyll, the expression of xanthorhodopsin remained minimal under all experimental conditions tested. Since the gene was found in the same operon as a histidine kinase, we propose that it might serve as a light sensor. Our results document that photoheterotrophic Sphingomonas bacteria use the energy of light under carbon-limited conditions, while under carbon-replete conditions, they cover all their metabolic needs through oxidative phosphorylation.IMPORTANCE Phototrophic organisms are key components of many natural environments. There exist two main phototrophic groups: species that collect light energy using various kinds of (bacterio)chlorophylls and species that utilize rhodopsins. Here, we present a freshwater bacterium Sphingomonas sp. strain AAP5 which contains genes for both light-harvesting systems. We show that bacteriochlorophyll-based reaction centers are repressed by light and/or glucose. On the other hand, the rhodopsin gene was not expressed significantly under any of the experimental conditions. This may indicate that rhodopsin in Sphingomonas may have other functions not linked to bioenergetics.

2.
J Photochem Photobiol B ; 213: 112085, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33220599

ABSTRACT

Gemmatimonas phototrophica is, so far, the only described phototrophic species of the bacterial phylum Gemmatimonadetes. Its cells contain a unique type of photosynthetic complex with the reaction center surrounded by a double ring antenna, however they can also grow in the dark using organic carbon substrates. Its photosynthesis genes were received via horizontal gene transfer from Proteobacteria. This raises two questions; how the horizontally transferred photosynthesis apparatus has integrated into the cellular machinery, and how much light-derived energy actually contributes to the cellular metabolism? To address these points, the photosynthetic reactions were studied on several levels, from photophysics of the reaction center to cellular growth. Flash photolysis measurements and bacteriochlorophyll fluorescence kinetic measurements documented the presence of fully functional type-2 reaction centers with a large light harvesting antenna. When illuminated, the bacterial cells reduced their respiration rate by 58 ±â€¯5%, revealing that oxidative phosphorylation was replaced by photophosphorylation. Moreover, illumination also more than doubled the assimilation rates of glucose, a sugar that is mostly used for respiration. Finally, light increased the growth rates of Gemmatimonas phototrophica colonies on agar plates. All the presented data provide evidence that photosynthetic complexes are fully integrated into cellular metabolism of Gemmatimonas phototrophica, and are able to provide a substantial amount of energy for its metabolism and growth.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/chemistry , Bacteriochlorophylls/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Bacteria/metabolism , Bacterial Proteins/metabolism , Kinetics , Oxidation-Reduction , Phosphorylation , Photolysis , Photosynthesis , Spectrometry, Fluorescence
3.
PLoS Biol ; 15(12): e2003943, 2017 12.
Article in English | MEDLINE | ID: mdl-29253871

ABSTRACT

The majority of life on Earth depends directly or indirectly on the sun as a source of energy. The initial step of photosynthesis is facilitated by light-harvesting complexes, which capture and transfer light energy into the reaction centers (RCs). Here, we analyzed the organization of photosynthetic (PS) complexes in the bacterium G. phototrophica, which so far is the only phototrophic representative of the bacterial phylum Gemmatimonadetes. The isolated complex has a molecular weight of about 800 ± 100 kDa, which is approximately 2 times larger than the core complex of Rhodospirillum rubrum. The complex contains 62.4 ± 4.7 bacteriochlorophyll (BChl) a molecules absorbing in 2 distinct infrared absorption bands with maxima at 816 and 868 nm. Using femtosecond transient absorption spectroscopy, we determined the energy transfer time between these spectral bands as 2 ps. Single particle analyses of the purified complexes showed that they were circular structures with an outer diameter of approximately 18 nm and a thickness of 7 nm. Based on the obtained, we propose that the light-harvesting complexes in G. phototrophica form 2 concentric rings surrounding the type 2 RC. The inner ring (corresponding to the B868 absorption band) is composed of 15 subunits and is analogous to the inner light-harvesting complex 1 (LH1) in purple bacteria. The outer ring is composed of 15 more distant BChl dimers with no or slow energy transfer between them, resulting in the B816 absorption band. This completely unique and elegant organization offers good structural stability, as well as high efficiency of light harvesting. Our results reveal that while the PS apparatus of Gemmatimonadetes was acquired via horizontal gene transfer from purple bacteria, it later evolved along its own pathway, devising a new arrangement of its light harvesting complexes.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Photosynthesis/physiology , Bacteria/classification , Bacteria/metabolism , Bacterial Physiological Phenomena , Gene Transfer, Horizontal , Phylogeny
4.
Thin Solid Films ; 536(100): 211-215, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23805010

ABSTRACT

The optical properties and electrical conductivity of highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) doped with poly(styrenesulfonate) (PSS) are reported as a function of the processing additive conditions. The addition of dimethyl sulfoxide (DMSO) increases the conductivity and modifies the dielectric response as observed from the ellipsometric studies. Also the surface roughness and morphology change with the composition of PEDOT:PSS:DMSO and film deposition conditions. The real part of the dielectric function becomes negative in highly conducting samples, indicating the presence of delocalized charge carriers. The real and imaginary parts of the refractive index were determined as a function of wavelength. The results are consistent with the increase in conductivity upon the addition of DMSO.

SELECTION OF CITATIONS
SEARCH DETAIL
...