Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Res ; 252(Pt 3): 119046, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38704004

ABSTRACT

Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.


Subject(s)
Charcoal , Rosaniline Dyes , Thermodynamics , Water Pollutants, Chemical , Zinc Oxide , Rosaniline Dyes/chemistry , Zinc Oxide/chemistry , Adsorption , Kinetics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Charcoal/chemistry , Coloring Agents/chemistry
2.
Adv Colloid Interface Sci ; 330: 103203, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820883

ABSTRACT

Sputtering is an effective technique for producing ultrathin films with diverse applications. The review begins by providing an in-depth overview of the background, introducing the early development of sputtering and its principles. Consequently, progress in advancements made in recent decades highlights the renaissance of sputtering as a powerful technology for creating thin films with varied compositions, structures, and properties. For the first time, we have discussed a thorough overview of several sputtered thin film materials based on metal and metal oxide, metal nitride, alloys, carbon, and ceramic-based thin film along with their properties and their applicability in various fields. We further delve into the applications of sputter-coated thin films, specifically emphasizing their relevance in environmental sustainability, energy and electronics, and biomedical fields. We critically examine the recent advancements in developing sputter-coated catalysts for eliminating water pollutants andhydrogen generation. Additionally, the review sheds light on advantages, shortcomings, and future directions for developing sputter-coated thin films utilized in biodegradable metals and alloys with enhanced corrosion resistance and biocompatibility. This review is a comprehensive integration of recent literature, covering diverse sputtering thin film applications. We delve deeply into various material types and emphasize critical analysis of recent advancements, particularly in environmental, energy, and biomedical fields. By offering insights into both advancements and limitations, the review provides a nuanced understanding essential for practical utilization.

3.
Saudi J Biol Sci ; 31(6): 103988, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38725580

ABSTRACT

The genus Landolphia (P. Beauv.) belongs to the Apocynaceae family with over 65 species distributed all over the tropical regions. This genus has a considerable number of documented medicinal, industrial, and ecologically beneficial effects. Therefore, this review is tailored towards the appraisal of the traditional significance, phytochemistry, and pharmacological activities of the genus Landolphia. This will help researchers understand future research trends by bridging the gaps between documented literature and contemporary uses. Relevant information was obtained from selection of scientific databases such as Web of Science, PubMed, Scopus, Google Scholar, ScienceDirect and Wiley. From documented literature, different parts of Landolphia have been used to improve fertility, lessen menstrual pain, boost sex libido, cure malaria and typhoid. Several classes of bioactive constituents such as terpenoids, phenolics, flavonoids, steroids, fatty acids, saponins, phytosterol and phenylpropanoid, volatile compounds, lignans and coumarins have been isolated from this genus. These secondary metabolites could be responsible for the reported antimicrobial, antimalarial, aphrodisiac, antioxidant, anti-inflammatory, antidiabetic and anticancer activities exhibited by this genus. The leaves, flower, bark and root of this genus have a wide range of essential nutrients and antinutrients which are essential for normal growth and development in living organisms. Despite all findings indicating the economical, industrial and pharmacological activities of Landolphia species, secondary metabolites and pharmacological potency of Landolphia of this genus are not adequately documented. Therefore, bioassay-guided isolation on the Landolphia extracts with proven biological activities should be prioritised in order to isolate pharmacophores with unique structural frameworks.

4.
Chemosphere ; 313: 137533, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36528163

ABSTRACT

In this present study, silver (Ag) and titanium dioxide (TiO2) nanoparticles were successfully deposited on coconut shell-derived activated carbon (CSAC), to synthesize a novel nanocomposite (CSAC@AgNPs@TiO2NPs) for the adsorption of Methylene Blue (MB) dye from aqueous solution. The fabricated CSAC@AgNPs@TiO2NPs nanocomposite was analyzed by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscope (TEM) equipped with Energy Dispersive X-ray spectroscopy (EDS) detector, X-ray Photoelectron Spectroscope (XPS), and Brunauer-Emmett-Teller (BET). The successful deposition of AgNPs and TiO2NPs on CSAC surface was revealed by the TEM/EDX, SEM, and XPS analysis. The mesopore structure of CSAC@AgNPs@TiO2NPs has a BET surface area of 301 m2/g. The batch adsorption studies were conducted and the influence of different parameters, i.e., adsorbent dose, adsorption time, initial dye concentration, pH and temperature were investigated. The nonlinear isotherm and kinetic modelling demonstrated that adsorption data were best fitted by Sips isotherm and pseudo-second-order models, respectively. The maximum adsorption capacity of MB onto CSAC@AgNPs@TiO2NPs by the Sips model was 184 mg/g. Thermodynamic results revealed that the adsorption was endothermic, spontaneous and physical in nature. CSAC@AgNPs@TiO2NPs revealed that MB absorption by CSAC@AgNPs@TiO2NPs was spontaneous and endothermic. The uptake capacity of MB was influenced significantly by the presence of competing ions including, NO3-, HCO3, Ca2+, and Na+. Repeated tests indicated that the CSAC@AgNPs@TiO2NPs can be regenerated and reused six times before being discarded. The primary separation mechanism between MB dye and CSAC@AgNPs@TiO2NPs was the electrostatic interaction. Thus, CSAC@AgNPs@TiO2NPs was an outstanding material, which displayed good applicability in real water with ≥ 97% removal of MB dye.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Methylene Blue/chemistry , Charcoal/chemistry , Water , Water Pollutants, Chemical/analysis , Nanoparticles/chemistry
5.
Saudi J Biol Sci ; 29(4): 2475-2482, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35531230

ABSTRACT

Ethnopharmacology relevance: Morinda lucida is an ethnopharmacologically important plant that has traditionally been used to treat malaria in the Southwest of Nigeria. The aim of this study is to look into the antiplasmodial properties of different solvent extracts of Morinda lucida bark and leaves. Materials and methods: The antiplasmodial model, (or curative assay), was tested against Plasmodium berghei NK65, a chloroquine-sensitive Plasmodium berghei strain. In experimental mice, parasitaemia, percentage inhibition, weight changes, and packed cell volume were measured and compared to chloroquine (10 mg kg-1). Standard phytochemical procedures were used to evaluate the extracts' chemo-profile. Results and Discussion: Phytochemical analysis of the extracts revealed the presence of tannins, alkaloids, steroids, saponins, phenols, and alkaloids, among other metabolites. The highest quantities of total phenolic, total tannins, and total flavonoid content were found in 50% ethanolic extracts. There was significant decrease in the body weight of the mice after inoculation, however, after administration of crude extracts, an increase in weight was observed. A negative variation (-3.00 g) was observed in group without treatment. The ethanolic crude extracts (200 and 400 mg/kg) significantly increased the packed cell volume compared to other extracts. CQ treated experimental mice showed 100% inhibition with activity greater than extracts treated groups. The lowest inhibitory effect was observed in 200 mg/kg ethanolic bark extract treated group with activity of 72.16%. The antiplasmodial activities exhibited by these extracts could be linked to the chemical constituents investigated. Conclusion: The findings of this study suggest the use of M. lucida leaves and bark as a medicinal agent for malaria treatment and as a potential source of effective antimalarial templates. Further research is needed to determine the safety and toxicological profile of these extracts in vivo.

6.
Sci Rep ; 11(1): 21498, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34728725

ABSTRACT

Cationic Malachite green has been identified as a candidate for the endocrine disruptive compound found in the environment. In this study, the mechanism and isotherm modeling of effective adsorption of cationic malachite green dye onto acid-functionalized maize cob (AFMC) was investigated by batch technique. The operational parameters such as initial concentration (100-600 mg/L); contact time (10-120 min) and pH (3-10) influenced the removal efficiency and quantity adsorbed. A maximum of 99.3% removal efficiency was obtained at optimum conditions. AFMC physicochemical properties (surface area 1329 m2/g and particle size 300 µm < Ф < 250 µm) enhanced its efficiency. Based on R2 > 0.97 and consistently low values of adsorption statistical error functions (ASEF), equilibrium data were best fitted to Freundlich isotherm. Kinetic data were best described by a pseudo-second-order model with consistent R2 > 0.98 and validated by ASEF. The mechanism of the process was better described by intraparticle diffusion. Evidence of the adsorption process was confirmed by the change in morphology via Scanning Electron Microscopy (SEM) and surface chemistry by Fourier Transform infrared (FTIR). The performance of AFMC enlisted it as a sustainable and promising low-cost adsorbent from agro-residue for treatment of endocrine disruptive dye polluted water.


Subject(s)
Acids/chemistry , Coloring Agents/chemistry , Endocrine Disruptors/chemistry , Models, Statistical , Rosaniline Dyes/chemistry , Water Pollutants, Chemical/chemistry , Water/chemistry , Kinetics , Thermodynamics , Zea mays/chemistry
7.
MethodsX ; 7: 100976, 2020.
Article in English | MEDLINE | ID: mdl-32670804

ABSTRACT

Single pot system in chemical reduction via bottom-up approach was used for the synthesis of core shell nanoscale zerovalent iron (CS-nZVI). CS-nZVI was characterized by a combination of physicochemical and spectroscopic techniques. Data obtained showed BET surface area 20.8643 m2/g, t-Plot micropore volume 0.001895 cm3/g, BJH volume pores 0.115083 cm3/g, average pore width 186.9268 Å, average pore diameter 240.753 Å, PZC 5.24, and pH 6.80. Surface plasmon Resonance from UV-Vis spectrophotometer was observed at 340 nm. Surface morphology from SEM and TEM revealed a spherical cluster and chain-like nanostructure of size range 15.425 nm -97.566 nm. Energy Dispersive XRF revealed an elemental abundance of 96.05% core shell indicating the dominance of nZVI. EDX showed an intense peak of nZVI at 6.2 keV. FTIR data revealed the surface functional groups of Fe-O with characteristics peaks at 686.68 cm-1, 569.02 cm-1 and 434 cm-1. In a batch technique, effective adsorption of endocrine disruptive Cu(II) ions was operational parameters dependent. Isotherm and kinetics studies were validated by statistical models. The study revealed unique characteristics of CS-nZVI and its efficacy in waste water treatment.

8.
Heliyon ; 6(1): e02872, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31989046

ABSTRACT

Chemically prepared activated carbon derived from Gmelina aborea leaves (GALAC) were used as adsorbent for the removal of Rhodamine B (Rh-B) dye from aqueous solutions. The adsorptive characteristics of activated carbon (AC) prepared from Gmelina aborea leaves (GAL) were studied using SEM, FTIR, pH point of zero charge (pHpzc) and Boehm Titration (BT) techniques respectively. The effects of pH, contact time, initial dye concentration and solution temperature were also examined. Experimental data were analyzed using four different isotherm models: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich. Four adsorption kinetic models: Pseudo-first-order (PFO), Pseudo-second-order (PSO), Elovich and Intraparticle diffusion models to establish the kinetics of adsorption process. The RhB dye adsorption on GALAC was best described by Langmuir isotherm model with maximum monolayer coverage of 1000 mg g-1 and R2 value of 0. 9999. The EDX analysis revealed that GALAC contained 82.81% by weight and 91.2% by atom of carbon contents which are requisites for high adsorption capacity. Adsorption kinetic data best fitted the PSO kinetic model. Thermodynamic parameters obtained for GALAC are (ΔGo ranged from -22.71 to -18.19 kJmol-1; ΔHo: 1.51 kJmol-1; and ΔSo: 0.39 kJmol-1 K-1respectively) indicating that the RhB dye removal from aqueous solutions by GALAC was spontaneous and endothermic in nature. The cost analysis established that GALAC is approximately eleven times cheaper than CAC thereby providing a saving of 351.41USD/kg. Chemically treated GAL was found to be an effective absorbent for the removal of RhB dye from aqueous solution.

9.
Turk J Pharm Sci ; 17(6): 599-609, 2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33389949

ABSTRACT

OBJECTIVES: Plant-mediated synthesis [silver (Ag) to form Ag nanoparticles (AgNPs)] is becoming progressively well accepted in many scientific and pharmaceutical fields. The aim of this study was to synthesize AgNPs using air-dried leaves of four neglected vegetables, i.e. Ceratotheca sesamoides, Ceiba pentandra, Crassocephalum crepidioides, and Launaea taraxacifolia. MATERIALS AND METHODS: Ultraviolet-visible (UV-Vis) spectroscopy, fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM) were used for characterization. Cell stabilization membrane and lipoxidase assays were used to determine used to assess the antiinflammatory activities while 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS+) assays were used to assess the antioxidant activities of AgNPs [L. taraxacifolia-AgNPs, C. sesamoides Ag nanoparticles (CS-AgNPs), C. pentandra Ag nanoparticles (CP-AgNPs), and C. crepidioides AgNPs (CC-AgNPs)]. RESULTS: The UV-Vis spectra of the synthesized NPs displayed absorption bands at around 360-440 nm, which is a characteristic band for AgNPs. The SEM image showed that the AgNPs formed were spherical in morphology. CC-AgNPs exhibited the most significant inhibitory activity against human red blood cell membrane stabilizasyonu [median inhibitory concentration (IC50): 32.2 µg/mL] while CS-AgNPs displayed the most significant inhibitory activity against lipoxygenases (IC50: 32.8 µg/mL). CP-AgNPs exhibited the most significant antioxidant effect against both ABTS and DPPH (IC50: 5.5 and 6.4 µg/mL) when compared to ascorbic acid (IC50: 4.7 µg/mL). CONCLUSION: The synthesized AgNPs were found to be stable and the FTIR evidence suggested that the phytochemicals in the vegetables might have played an important role in the reduction and stabilization of AgNPs. This work showed that the synthesized AgNPs from non-cultivated vegetables can find relevance and application in health, drugs, food and environmental science. The evidences herein further confirmed their ethnopharmacological applications.

10.
Heliyon ; 5(10): e02517, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667378

ABSTRACT

Single pot green synthesis of silver nanoparticles (AgNPs) was successfully carried out using medicinal plant extract of Acalypha wilkesiana via bottom-up approach. Five imperative operational parameters (pH, contact time, concentration, volume ratio and temperature) pivotal to the synthesis of silver nanoparticles were investigated. The study showed pH 9, 90 min contact time, 0.001 M Ag+ concentration, volume ratio 1:9 (extract: Ag+ solution), and temperature between 90 - 100 °C were important for the synthesis of Acalypha wilkesiana silver nanoparticles (AW-AgNPs). Phytochemical screening confirmed the presence of saponins, flavonoids, phenols and triterpenes for A. wilkesiana. These phytomolecules served as both capping and stabilizing agent in the green synthesis of silver nanoparticles. AW-AgNPs was characterized by UV-Vis Spectroscopy, Fourier Transform Infrared (FTIR) Spectroscopy and Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX). The surface Plasmon resonance (SPR) was observed at 450 nm which is a characteristic absorbance region of AW-AgNPs formation as a result of the collective oscillation of free electron of silver nanoparticles. FTIR Spectroscopy confirmed the presence of functional groups responsible for bioreduction of Ag+. SEM and TEM results confirmed a well dispersed AW-AgNPs of spherical shape. EDX shows the elemental distribution and confirmed AgNPs with a characteristic intense peak at 3.0 keV. AW-AgNPs showed significant inhibition against selected Gram negative and Gram positive prevailing bacteria. AW-AgNPs can therefore be recommended as potential antimicrobial and therapeutic agent against multidrug resistant pathogens.

11.
Heliyon ; 5(4): e01543, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31049445

ABSTRACT

Novel silver nanoparticles from Gleichenia Pectinata (Willd.) C. Presl. was synthesized. A combination of spectroscopic and microscopic techniques were utilized to characterize the newly synthesized Gleichenia Pectinata Silver Nanoparticles (GPAgNPs) vis-à-vis UV-Vis Spectroscopy, Fourier Transform Infra-Red (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD) Analyses. Significant absorption was observed at 460 nm resulting from the surface Plasmon resonance (SPR). A rapid rate of synthesis was observed and the best surface plasmon resonance was obtained at 105 minutes contact time. SEM and TEM showed an spherical shape of GPAgNPs with an average size of 7.51 nm. The XRD result revealed a crystalline and polydispersed GPAgNPs. GPAgNPs were effective against four antibiotic resistant pathogens and they exhibited excellent antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae and Candida albicans. GPAgNPs favorably competed with standard antibiotics. This therefore enlisted GPAgNPs as potential antimicrobial and therapeutic agents against multidrug resistant micro-organisms (MDRM).

SELECTION OF CITATIONS
SEARCH DETAIL
...