Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 9089, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277460

ABSTRACT

This study reports a facile and cost-effective technique for preparing magnetic copper ferrite nanoparticles supported on IRMOF-3/GO [IRMOF-3/GO/CuFe2O4]. The synthesized IRMOF-3/GO/CuFe2O4 was characterized with IR, SEM, TGA, XRD, BET, EDX, VSM, and elemental mapping. The prepared catalyst revealed higher catalytic behavior in synthesizing heterocyclic compounds through a one-pot reaction between various aromatic aldehydes, diverse primary amines, malononitrile, and dimedone under ultrasound irradiations. Among the notable features of this technique are higher efficiency, easy recovery from the reaction mixture, removal of a heterogeneous catalyst, and uncomplicated route. In this catalytic system, the activity level was almost constant after various stages of reuse and recovery.

2.
RSC Adv ; 12(36): 23481-23502, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36090397

ABSTRACT

The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants. Accordingly, the elimination of inorganic and organic pollutants using sustainable, effective, and low-cost heterogeneous catalysts is considered as one of the most essential routes for this aim. Thus, many efforts have been devoted to the synthesis of novel compounds and improving their catalytic performance. Recently, palladium- and copper-based hydrogels have been used as catalysts for reduction, degradation, and decomposition reactions because they have significant features such as high mechanical strength, thermal stability, and high surface area. Herein, we summarize the progress achieved in this field, including the various methods for the synthesis of copper- and palladium-based hydrogel catalysts and their applications for environmental remediation. Moreover, palladium- and copper-based hydrogel catalysts, which have certain advantages, including high catalytic ability, reusability, easy work-up, and simple synthesis, are proposed as a new group of effective catalysts.

3.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808091

ABSTRACT

The current study aims to explain recent developments in the synthesis of Pb(II)-azido metal-organic coordination polymers. Coordination polymers are defined as hybrid materials encompassing metal-ion-based, organic linkers, vertices, and ligands, serving to link the vertices to 1D, 2D, or 3D periodic configurations. The coordination polymers have many applications and potential properties in many research fields, primarily dependent on particular host-guest interactions. Metal coordination polymers (CPs) and complexes have fascinating structural topologies. Therefore, they have found numerous applications in different areas over the past two decades. Azido-bridged complexes are inorganic coordination ligands with higher fascination that have been the subject of intense research because of their coordination adaptability and magnetic diversity. Several sonochemical methods have been developed to synthesize nanostructures. Researchers have recently been interested in using ultrasound in organic chemistry synthetics, since ultrasonic waves in liquids accelerate chemical reactions in heterogeneous and homogeneous systems. The sonochemical synthesis of lead-azide coordination compounds resulted from very fantastic morphologies, and some of these compounds are used as precursors for preparing nano lead oxide. The ultrasonic sonochemistry approach has been extensively applied in different research fields, such as medical imaging, biological cell disruption, thermoplastic welding, food processing, and waste treatment. CPs serve as appropriate precursors for preparing favorable materials at the nanoscale. Using these polymers as precursors is beneficial for preparing inorganic nanomaterials such as metal oxides.

4.
Adv Colloid Interface Sci ; 276: 102103, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31978638

ABSTRACT

Among various metal nanoparticles, palladium nanoparticles (Pd NPs) are one of the most important and fascinating nanomaterials. An important concern about the preparation of Pd NPs is the formation of toxic by-products, dangerous wastes and harmful pollutants. The best solution to exclude and/or minimize these toxic substances is plant mediated biosynthesis of Pd NPs. Biogenic Pd-based NPs from plant extracts have been identified as valuable nanocatalysts in various catalytic reactions because of their excellent activities and selectivity. They have captured the attention of researchers owing to their economical, sustainable, green and eco-friendly nature. This review attempts to cover the recent progresses in the fabrication, characterization and broad applications of biogenic Pd NPs in environmental and catalytic systems. In addition, the stability of biosynthesized Pd NPs and mechanism of their formation are investigated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coordination Complexes/pharmacology , Escherichia coli/drug effects , Metal Nanoparticles/chemistry , Palladium/pharmacology , Plants/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Catalysis , Coordination Complexes/chemistry , Coordination Complexes/metabolism , Palladium/chemistry , Palladium/metabolism , Plants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...