Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(13): 8852-8857, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507569

ABSTRACT

Photothermal conversion is a growing research area that promotes thermal transformations with visible light irradiation. However, few examples of dual photothermal conversion and catalysis limit the power of this phenomenon. Here, we take inspiration from nature's ability to use porphyrinic compounds for nonradiative relaxation to convert light into heat to facilitate thermal polymerization catalysis. We identify the photothermal conversion catalytic activity of a vitamin B12 derivative, heptamethyl ester cobyrinate (HME-Cob), to perform atom transfer radical polymerization (ATRP) under irradiation. Rapid polymerization are obtained under photothermal activation while maintaining good control over polymerization with the aid of a photoinitiator to enable light-induced catalyst regeneration. The catalyst exhibits exquisite temporal control in photocontrolled thermal polymerization. Ultimately, the activation of this complex is accessed across a broad range of wavelengths, including near-IR light, with excellent temporal control. This work showcases the potential of developing photothermal conversion catalysts.

2.
Macromol Rapid Commun ; 45(8): e2300675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38163327

ABSTRACT

Despite their industrial ubiquity, polyolefin-polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal-organic insertion light-initiated radical polymerization, to synthesize polyolefin-b-poly(methyl acrylate) copolymer by combining palladium-catalyzed insertion-coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart-type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue-light irradiation, generating polyolefin-based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin-Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation.


Subject(s)
Acrylic Resins , Polyenes , Polymerization , Polyenes/chemistry , Polyenes/chemical synthesis , Acrylic Resins/chemistry , Acrylic Resins/chemical synthesis , Catalysis , Polymers/chemistry , Polymers/chemical synthesis , Palladium/chemistry , Molecular Structure , Acrylates/chemistry , Light
3.
J Am Chem Soc ; 145(39): 21587-21599, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37733464

ABSTRACT

In catalysis, linear free energy relationships (LFERs) are commonly used to identify reaction descriptors that enable the prediction of outcomes and the design of more effective catalysts. Herein, LFERs are established for the reductive cleavage of the C(sp3)-X bond in alkyl halides (RX) by Cu complexes. This reaction represents the activation step in atom transfer radical polymerization and atom transfer radical addition/cyclization. The values of the activation rate constant, kact, for 107 Cu complex/RX couples in 5 different solvents spanning over 13 orders of magnitude were effectively interpolated by the equation: log kact = sC(I + C + S), where I, C, and S are, respectively, the initiator, catalyst, and solvent parameters, and sC is the catalyst-specific sensitivity parameter. Furthermore, each of these parameters was correlated to relevant descriptors, which included the bond dissociation free energy of RX and its Tolman cone angle θ, the electron affinity of X, the radical stabilization energy, the standard reduction potential of the Cu complex, the polarizability parameter π* of the solvent, and the distortion energy of the complex in its transition state. This set of descriptors establishes the fundamental properties of Cu complexes and RX that determine their reactivity and that need to be considered when designing novel systems for atom transfer radical reactions. Finally, a multivariate linear regression (MLR) approach was adopted to develop an objective model that surpassed the predictive capability of the LFER equation. Thus, the MLR model was employed to predict kact values for >2000 Cu complex/RX pairs.

4.
J Am Chem Soc ; 145(35): 19387-19395, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37606469

ABSTRACT

Advances in controlled radical polymerizations by cobalt complexes have primarily taken advantage of the reactivity of cobalt as a persistent radical to reversibly deactivate propagating chains by forming a carbon-cobalt bond. However, cobalt-mediated radical polymerizations require stoichiometric ratios of a cobalt complex, deterring its utility in synthesizing well-defined polymers. Here, we developed a strategy to use cobalt as a catalyst to control radical polymerizations via halogen atom transfer with alkyl halide initiators. Using a modified, hydrophobic analogue of vitamin B12 (heptamethyl ester cobyrinate) as a cobalt precatalyst, we controlled the polymerization of acrylate monomers. The polymerization efficiency of the cobalt catalyst was significantly improved by additional bromide anions, which enhanced the deactivation of propagating radicals yielding polymers with dispersity values <1.2 using catalyst concentrations as low as 5 mol %. We anticipate that the development of cobalt catalysis in atom transfer radical polymerization will enable new opportunities in designing catalytic systems for the controlled synthesis of polymers.

5.
ACS Cent Sci ; 9(2): 134-136, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36844487
6.
Chem Sci ; 13(39): 11540-11550, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36320395

ABSTRACT

Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X-CuII/L). The role of PC was to trigger and drive the polymerization, while X-CuII/L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X-CuII/L, generating CuI/L activator and PC˙+. The ATRP ligand (L) used in excess then reduced the PC˙+, closing the photocatalytic cycle. The continuous reduction of X-CuII/L back to CuI/L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X-CuII/L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ D ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ D ≤ 1.22) under identical conditions.

7.
J Am Chem Soc ; 144(29): 13311-13318, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35833653

ABSTRACT

Cobalt-mediated radical polymerization (CMRP) is a versatile technique for controlling the polymerization of vinyl monomers via reversible termination using CoII complexes as persistent radical deactivators. Here, we report a facile approach for the in situ generation of Co-H as a discrete initiator and mediator for CMRP of acrylate and acrylamide monomers, overcoming the limitations of existing initiation strategies. In situ oxidation of a CoII complex followed by transmetalation with silane generates a Co-H species, which initiates polymerization via hydrometalation of the monomer. This method precludes an induction period with excellent control over targeted molecular weight and dispersity. Strikingly, our approach allows complete polymerization when the induction period ends for conventional CMRP. A broad scope of monomers is amenable to this protocol, including acrylates and acrylamides. Tunable catalyst electronics afford tailored dispersity while maintaining agreement in molecular weight in stark contrast to conventional methods. Elimination of this induction period imbues polymerization behavior entirely to the catalyst electronic effects on reversible deactivation/activation rates.


Subject(s)
Acrylamides , Cobalt , Catalysis , Molecular Weight , Polymerization
8.
ACS Macro Lett ; 11(3): 376-381, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35575360

ABSTRACT

Despite advances in photochemical atom transfer radical polymerization (photoATRP), these systems often rely on the use of UV light for the activation/generation of the copper-based catalytic species. To circumvent the problems associated with the UV light, we developed a dual photoredox catalytic system to mediate photoinduced ATRP under red-light irradiation. The catalytic system is comprised of a Cu catalyst to control the polymerization via ATRP equilibrium and a photocatalyst, such as zinc(II) tetraphenylporphine or zinc(II) phthalocyanine, to generate the activator CuI species under red-light irradiation. In addition, this system showed oxygen tolerance due to the consumption of oxygen in the photoredox reactions, yielding well-controlled polymerizations without the need for deoxygenation processes.


Subject(s)
Copper , Light , Catalysis , Oxygen , Polymerization
9.
Front Chem ; 9: 734076, 2021.
Article in English | MEDLINE | ID: mdl-34476232

ABSTRACT

Photoluminescent nanosized quasi-spherical polymeric assemblies prepared by the hydrothermal reaction of polyacrylonitrile (PAN), ht-PLPPAN, were demonstrated to have the ability to photo-induce atom transfer radical polymerization (ATRP) catalyzed by low, parts per million concentrations of CuII complex with tris(2-pyridylmethyl)amine (TPMA). Such photo induced ATRP reactions of acrylate and methacrylate monomers were performed in water or organic solvents, using ht-PLPPAN as the photo-cocatalyst under blue or green light irradiation. Mechanistic studies indicate that ht-PLPPAN helps to sustain the polymerization by facilitating the activation of alkyl bromide species by two modes: 1) green or blue light-driven photoreduction of the CuII catalyst to the activating CuI form, and 2) direct activation of dormant alkyl bromide species which occurs only under blue light. The photoreduction of the CuII complex by ht-PLPPAN was confirmed by linear sweep voltammetry performed under illumination. Analysis of the polymerization kinetics in aqueous media indicated even though CuI complexes comprised only 1-1.4% of all Cu species at equilibrium, they exhibited high activation rate constant and activated the alkyl bromide initiators five to six orders of magnitude faster than ht-PLPPAN.

10.
J Am Chem Soc ; 143(25): 9630-9638, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34152140

ABSTRACT

Using the power of light to drive controlled radical polymerizations has provided significant advances in synthesis of well-defined polymers. Photoinduced atom transfer radical polymerization (ATRP) systems often employ UV light to regenerate copper activator species to mediate the polymerization. Taking full advantage of long-wavelength visible light for ATRP would require developing appropriate photocatalytic systems that engage in photoinduced electron transfer processes with the ATRP components to generate activating species. Herein, we developed conjugated microporous polymers (CMP) as heterogeneous photocatalysts to exploit the power of visible light in promoting copper-catalyzed ATRP. The photocatalyst was designed by cross-linking phenothiazine (PTZ) as a photoactive core in the presence of dimethoxybenzene as a cross-linker via the Friedel-Crafts reaction. The resulting PTZ-CMP network showed photoactivity in the visible region due to the extended conjugation throughout the network because of the aromatic groups connecting the PTZ units. Therefore, photoinduced copper-catalyzed ATRP was performed with CMPs that regenerated activator species under green or red light irradiation to start the ATRP process. This resulted in efficient polymerization of acrylate and methacrylate monomers with high conversion and well-controlled molecular weight. The heterogeneous nature of the photocatalyst enabled easy separation and efficient reusability in subsequent polymerizations.

11.
ACS Macro Lett ; 10(1): 54-59, 2021 01 19.
Article in English | MEDLINE | ID: mdl-35548988

ABSTRACT

Webinar series are helping our community of polymer scientists to stay engaged and connected, despite the cancellation of in-person meetings and the periodic closure of laboratories to contain the spread of the coronavirus pandemic. The sustainable and inclusive character of these virtual events make them valuable learning and networking opportunities. As organizers of the Matyjaszewski Lab Webinar Series, we share herein our experience, highlighting the benefits of virtual meetings and providing a short guide for webinar organizers. Researchers, particularly young scientists, are encouraged to organize such virtual events to broaden their skills and strengthen their professional network.


Subject(s)
Laboratories , Physicians , Humans , Learning , Pandemics , Polymers
12.
Molecules ; 25(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260141

ABSTRACT

Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP.


Subject(s)
Iron/chemistry , Methacrylates/chemistry , Styrene/chemistry , Catalysis , Copper/chemistry , Green Chemistry Technology , Polymerization
13.
Chem Sci ; 11(33): 8809-8816, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-34123134

ABSTRACT

ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N-isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights (M n > 270 000), and low dispersities (1.16 < D < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP (D = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system.

14.
ACS Macro Lett ; 8(9): 1110-1114, 2019 Sep 17.
Article in English | MEDLINE | ID: mdl-35619440

ABSTRACT

Fluorinated polymers are an important class of functional materials that exhibit unique properties such as high chemical resistance, thermal stability, and low surface energy. Atom transfer radical polymerization (ATRP) of semifluorinated monomers catalyzed by copper catalysts often requires development of special conditions to control the polymerization and prevent side reactions such as base-catalyzed transesterification between the fluoro-containing monomers and solvents. In this paper, photoinduced iron-catalyzed ATRP was applied to the polymerization of a variety of semifluorinated methacrylate monomers. Polymerizations were initiated by photochemical generation of the Fe catalyst activator under blue light irradiation, enabling temporal control over the growth of polymer chains, and were well-controlled in various solvents, including fluorinated and nonfluorinated solvents, without undergoing any side reactions. Moreover, in situ chain extension and block copolymerization experiments demonstrated the preservation of chain end functionality, enabling facile synthesis of well-controlled block copolymers.

15.
Chem Commun (Camb) ; 55(5): 612-615, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30565596

ABSTRACT

Temporal control in atom transfer radical polymerization (ATRP) relies on modulating the oxidation state of a copper catalyst, as polymer chains are activated by L/CuI and deactivated by L/CuII. (Re)generation of L/CuI activator has been achieved by applying a multitude of external stimuli. However, switching the Cu catalyst off by oxidizing to L/CuII through external chemical stimuli has not yet been investigated. A redox switchable ATRP was developed in which an oxidizing agent was used to oxidize L/CuI activator to L/CuII, thus halting the polymerization. A ferrocenium salt or oxygen were used to switch off the Cu catalyst, whereas ascorbic acid was used to switch the catalyst on by (re)generating L/CuI. The redox switches efficiently modulated the oxidation state of the catalyst without sacrificing control over polymerization.

16.
ACS Macro Lett ; 7(6): 720-725, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-35632954

ABSTRACT

Photomediated atom transfer radical polymerization (photoATRP) of (meth)acrylic monomers was conducted in miniemulsion media. The polymerization procedures took advantage of an ion-pair catalyst formed by interaction of Cu/TPMA2 (TPMA = tris(2-pyridylmethyl)amine) and an anionic surfactant, sodium dodecyl sulfate (SDS). The ion-pair catalyst was efficient in controlling ATRP reactions with catalyst loadings as low as 100 ppm. The effect of different polymerization parameters, such as the size of the reaction vial, amount of surfactant, and solids content influencing the photoATRP in miniemulsion, was studied. The polymerization was conducted with solids content ranging from 5 to 50 vol % under a moderate surfactant loading (<5 wt % relative to monomer). Excellent temporal control was achieved upon switching the UV light on and off multiple times, and the polymer was successfully chain extended, indicating high retention of chain-end fidelity.

17.
ACS Macro Lett ; 6(5): 546-549, 2017 May 16.
Article in English | MEDLINE | ID: mdl-35610875

ABSTRACT

A mechanically controlled atom transfer radical polymerization (mechanoATRP) was successfully carried out in an ultrasound bath with low ppm of copper catalyst. The polymerization of methyl acrylate in the presence of CuBr2/tris(2-pyridylmethyl)amine catalyst using ultrasound as an external stimulus was temporally controlled by switching on-off ultrasound agitation. The first order kinetics was observed during ultrasonication. The experimental molecular weights agreed well with the theoretical values and displayed narrow molecular weight distribution. The effects of various types of piezoelectric BaTiO3 nanoparticles, loadings of nanoparticles, and targeted degrees of polymerization were studied.

18.
Macromol Rapid Commun ; 38(13)2017 Jul.
Article in English | MEDLINE | ID: mdl-27995746

ABSTRACT

A photoinduced atom transfer radical polymerization (photoATRP) of methacrylates is investigated using air-stable FeBr3 as catalyst in the absence of conventional ATRP initiators, additional ligands, reducing agents, and/or radical initiators. The ATRP alkyl halide initiator is formed in situ via photoreduction of FeBr3 by methacrylate monomers. The kinetics of the polymerization display a linear semilogarithmic plot after several hours of induction period. The molecular weight can be modulated by additions of different amounts of FeBr3 , and polymers have narrow molecular weight distributions. Thus, FeBr3 acts as deactivator, as well as a source of activator FeBr2 and initiator. This method features a temporal control, and can provide various polymethacrylates with high chain end functionality.


Subject(s)
Iron/chemistry , Methacrylates/chemical synthesis , Polymerization , Polymers/chemical synthesis , Solvents/chemistry , Catalysis , Polymerization/radiation effects
19.
Chemistry ; 23(25): 5972-5977, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28009492

ABSTRACT

This paper reports use of phenyl benzo[b]phenothiazine (Ph-benzoPTZ) as a visible light-induced metal-free atom transfer radical polymerization (ATRP) photoredox catalyst. Well-controlled polymerizations of various methacrylate monomers were conducted under a 392 nm visible light LED using Ph-benzoPTZ to activate different alkyl halides. The use of the photocatalyst enabled temporal control over the growth of polymer chains during intermittent on/off periods. The polymerization was initiated and progressed only under stimulation by light and completely stopped in the absence of light. Block copolymers were synthesized to demonstrate high retention of chain end fidelity in the polymers and livingness of the process.

20.
Chem Rev ; 116(17): 10212-75, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-26745441

ABSTRACT

Photochemical reactions, particularly those involving photoinduced electron transfer processes, establish a substantial contribution to the modern synthetic chemistry, and the polymer community has been increasingly interested in exploiting and developing novel photochemical strategies. These reactions are efficiently utilized in almost every aspect of macromolecular architecture synthesis, involving initiation, control of the reaction kinetics and molecular structures, functionalization, and decoration, etc. Merging with polymerization techniques, photochemistry has opened up new intriguing and powerful avenues for macromolecular synthesis. Construction of various polymers with incredibly complex structures and specific control over the chain topology, as well as providing the opportunity to manipulate the reaction course through spatiotemporal control, are one of the unique abilities of such photochemical reactions. This review paper provides a comprehensive account of the fundamentals and applications of photoinduced electron transfer reactions in polymer synthesis. Besides traditional photopolymerization methods, namely free radical and cationic polymerizations, step-growth polymerizations involving electron transfer processes are included. In addition, controlled radical polymerization and "Click Chemistry" methods have significantly evolved over the last few decades allowing access to narrow molecular weight distributions, efficient regulation of the molecular weight and the monomer sequence and incredibly complex architectures, and polymer modifications and surface patterning are covered. Potential applications including synthesis of block and graft copolymers, polymer-metal nanocomposites, various hybrid materials and bioconjugates, and sequence defined polymers through photoinduced electron transfer reactions are also investigated in detail.

SELECTION OF CITATIONS
SEARCH DETAIL
...